
EdgeBERT: Sentence-Level Energy Optimizations for
Latency-Aware Multi-Task NLP Inference

Thierry Tambe
Harvard University

ttambe@g.harvard.edu

Coleman Hooper
Harvard University

chooper@college.harvard.edu

Lillian Pentecost
Harvard University

lillian_pentecost@g.harvard.edu

Tianyu Jia
Harvard University
tjia@g.harvard.edu

En-Yu Yang
Harvard University

enyu_yang@g.harvard.edu

Marco Donato
Tufts University

marco.donato@tufts.edu

Victor Sanh
Hugging Face

victor@huggingface.co

Paul N. Whatmough
Arm Research

paul.whatmough@arm.com

Alexander M. Rush
Cornell University
arush@cornell.edu

David Brooks
Harvard University

dbrooks@g.harvard.edu

Gu-Yeon Wei
Harvard University

gywei@g.harvard.edu

ABSTRACT
Transformer-based language models such as BERT provide signif-
icant accuracy improvement to a multitude of natural language
processing (NLP) tasks. However, their hefty computational and
memory demands make them challenging to deploy to resource-
constrained edge platforms with strict latency requirements.

We present EdgeBERT, an in-depth algorithm-hardware co-
design for latency-aware energy optimizations for multi-task NLP.
EdgeBERT employs entropy-based early exit predication in order to
perform dynamic voltage-frequency scaling (DVFS), at a sentence
granularity, for minimal energy consumption while adhering to
a prescribed target latency. Computation and memory footprint
overheads are further alleviated by employing a calibrated combi-
nation of adaptive attention span, selective network pruning, and
floating-point quantization.

Furthermore, in order to maximize the synergistic benefits of
these algorithms in always-on and intermediate edge computing
settings, we specialize a 12nm scalable hardware accelerator sys-
tem, integrating a fast-switching low-dropout voltage regulator
(LDO), an all-digital phase-locked loop (ADPLL), as well as, high-
density embedded non-volatile memories (eNVMs) wherein the
sparse floating-point bit encodings of the shared multi-task parame-
ters are carefully stored. Altogether, latency-aware multi-task NLP
inference acceleration on the EdgeBERT hardware system generates
up to 7×, 2.5×, and 53× lower energy compared to the conventional
inference without early stopping, the latency-unbounded early exit

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MICRO ’21, October 18–22, 2021, Virtual Event, Greece
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8557-2/21/10. . . $15.00
https://doi.org/10.1145/3466752.3480095

approach, and CUDA adaptations on an Nvidia Jetson Tegra X2
mobile GPU, respectively.

CCS CONCEPTS
• Computer systems organization → Application specific inte-
grated circuits.

KEYWORDS
natural language processing, software and hardware co-design,
latency-aware, embedded non-volatile memories
ACM Reference Format:
Thierry Tambe, Coleman Hooper, Lillian Pentecost, Tianyu Jia, En-Yu Yang,
Marco Donato, Victor Sanh, Paul N. Whatmough, Alexander M. Rush, David
Brooks, and Gu-Yeon Wei. 2021. EdgeBERT: Sentence-Level Energy Opti-
mizations for Latency-Aware Multi-Task NLP Inference. In MICRO-54: 54th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO
’21), October 18–22, 2021, Virtual Event, Greece. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3466752.3480095

1 INTRODUCTION
Transformer-based networks trained with large multi-domain
datasets have unlocked a series of breakthroughs in natural lan-
guage learning and representation. A major catalyst of this success
is the Bidirectional Encoder Representations from Transformers tech-
nique, or BERT [16], which substantially advanced nuance and
context understanding. Its pre-training strategy, which consists of
learning intentionally hidden sections of text, have proven bene-
ficial for several downstream natural language processing (NLP)
tasks. BERT has sparked leading-edge performance in NLP leader-
boards [58, 78], and it is now applied at a global scale in web search
engines [52] with marked improvements in the quality of query
results.

Advances in NLPmodels are also fueling the growth of intelligent
virtual assistants, which leverage NLP to implement interactive
voice interfaces. Currently, these applications are offloaded from the
edge device to the cloud. However, they are naturally better suited

830

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3466752.3480095
https://doi.org/10.1145/3466752.3480095
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3466752.3480095&domain=pdf&date_stamp=2021-10-17

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Tambe, et al.

No

YesNo

(b) BERT Inference with Early Exit

“Smart, provocative
and blistering funny”

(a) Conventional BERT Inference

(c) EdgeBERT Latency-Aware Inference (HW/SW Co-Design)

1 (Positive Sentiment)

“Smart, provocative
and blistering funny”

Exit? 1 (Positive Sentiment)
2.5✕

Energy
Savings

7✕
Energy
Savings

DRAM Read

Word
Embeddings

Transformer
Layer 1

Transformer
Layer 2

Transformer
Layer 12

Exit?

Word
Embeddings

Transformer
Layer 1

Transformer
Layer 2

Transformer
Layer 12

No

“Smart, provocative
and blistering funny”

Exit?

1 (Positive Sentiment)

Word
Embeddings

Transformer
Layer 1

Transformer
Layer 2

Transformer
Layer 5

Exit?

DVFSEarly Exit
Predictor

Target Latency
(e.g. 50ms)

Exit after Layer 5

Reading from
on-chip eNVMs

DRAM Read

Figure 1: (a) Conventional BERT inference, (b) Conventional
latency-unbounded BERT inference with early exit. (c) Pro-
posed latency-bounded inference. The entropy result from
the first layer is used to auto-adjust the accelerator supply
voltage and clock frequency for energy-optimal operation
while meeting an application end-to-end latency target.

to deployment on edge devices, where personal data can be kept
private and the round trip latency to the cloud is removed. However,
the impressive performance of BERT comes with a heavy compute
and memory cost, which makes on-device inference prohibitive.
Most significantly, the BERT base model consumes a staggering
432 MB of memory in native 32-bit floating-point (FP32).

Therefore, the goal of deploying BERT on edge/mobile devices
is challenging and requires tight co-design of the BERT model
optimizations with dedicated hardware acceleration and memory
system design. The constraints on mobile can be quite different to
the datacenter scenario, where BERT has been mainly deployed to
date. Firstly, since we are dealing with user input, we need to meet
real time throughput requirements to prevent a noticeable lag to the
user. Secondly, energy consumption is a critical concern on mobile
devices, both for the model inference and also the associated data
movement cost. A number of prior works have been proposed to re-
duce BERT storage and computation overheads [21]. In fact, most of
the compression techniques (weight pruning [49], distillation [63],
quantization [68, 89]) originally proposed for convolutional and
recurrent neural networks (CNNs, RNNs) have been independently
applied to Transformer-based DNNs.

In this work, we present EdgeBERT, a principled latency-driven
approach to accelerate NLP workloads with minimal energy con-
sumption via early exit prediction, dynamic voltage-frequency scal-
ing (DFVS), and non-volatile memory bitmask encoding of the
shared word embeddings.

In conventional BERT inference (Fig. 1a), the final classification
result is generated by the last Transformer layer. Early exit mech-
anisms [65, 73, 87, 90] (Fig. 1(b)) have been proposed to reduce
the average energy and latency. The early exit entropy, which is
a probabilistic measure of the classification confidence, is evalu-
ated at the output of each computed Transformer layer and the
inference exits when the entropy value falls below a pre-defined
threshold. While this approach can appreciably reduce computation
and energy costs, the achieved latency can vary drastically from

one input sentence to another, potentially violating the strict real
time latency constraint of the application. In contrast, EdgeBERT
uses this upper-bound latency and the target entropy as optimiza-
tion constraints, and then dynamically auto-adjusts the accelerator
supply voltage and clock frequency to minimize energy consump-
tion (Fig. 1(c)), while meeting the real time throughput requirement.
Since energy scales quadratically with VDD and linearly with the
number of computation cycles, our DVFS algorithm finds the lowest
possible frequency/voltage, while also minimizing the total number
of FLOPs via adaptive attention span predication.

While the benefits of early exit and attention predications can be
reaped on commodity GPUs, we unlock additional energy savings
by co-designing the hardware datapaths. Specifically, we exploit
these algorithmic optimizations in the EdgeBERT accelerator sys-
tem, which integrates a fast-switching low-dropout (LDO) voltage
regulator and an all-digital phase-locked loop (ADPLL) for DVFS
adjustments. The EdgeBERT accelerator uses bit-mask encoding for
compressed sparse computations, while optimizing key operations
(entropy assessment, layer normalization, softmax and attention
masking) for numerical stability and energy efficiency.

Furthermore, edge/IoT devices operate intermittently which mo-
tivates powering down as much as possible. The model’s weights,
typically stored in on-chip SRAMs, either have to be reloaded from
DRAM each wake up cycle or the on-chip SRAMs storing the
weights must be kept on, wasting leakage power [39]. Embedded
non-volatile memories (eNVMs), which have shown considerable
progress in recent years, offer great promise, if used judiciously, to
eliminate the power penalty associated with intermittent operation.
For this purpose, we perform monte-carlo fault injection simula-
tions to identify robust and viable eNVM structures for storing the
shared NLP multi-task parameters with bitmask encoding. Our re-
sulting eNVM configuration significantly alleviates the energy and
latency costs associated with multi-task intermediate computing
by as much as 66,000× and 50×, respectively.

Altogether, EdgeBERT generates on average up to 7×, and 2.5×
per-sentence energy savings compared to the conventional BERT
inference, and latency-unaware early exit approaches, respectively.

This paper therefore makes the following contributions:

• We propose EdgeBERT, a novel algorithm-hardware co-
design approach to enable latency-bound NLP workloads on
resource-constrained embedded devices.

• Recognizing that BERT word embeddings are shared across
NLP tasks, we significantly alleviate off-chip communication
costs by identifying viable and robust multi-level eNVM
structures for storing the multi-task word embeddings.

• Leveraging the insights from this broad analysis, we pro-
pose and design a 12nm accelerator that integrates a fast-
switching LDO, an ADPLL, and a compressed sparse hard-
ware accelerator that efficiently computes the DVFS, entropy,
and adaptive attention span predication algorithms and other
key Transformer operations using specialized datapaths.

• We evaluate the energy consumption of latency-bound in-
ference on four NLP tasks, and find that the EdgeBERT hard-
ware accelerator system generates up to 7×, 2.5×, and 53×
lower energy compared to the unoptimized baseline infer-
ence without early exit, the conventional latency-unaware

831

EdgeBERT: Sentence-Level Energy Optimizations for Latency-Aware Multi-Task NLP Inference MICRO ’21, October 18–22, 2021, Virtual Event, Greece

early exit approach, and CUDA adaptations on an Nvidia
Jetson Tegra X2 mobile GPU respectively.

2 BACKGROUND
2.1 Benchmarks
The General Language Understanding Evaluation (GLUE) bench-
mark is the most widely used tool to evaluate NLP performance.
It consists of nine English sentence understanding tasks covering
three categories: Single-Sentence, Similarity and Paraphrase, and
Inference [78]. This collection of datasets is specifically designed to
favor models that can adapt to a variety of NLP tasks. To validate
the robustness and generalization performance of the EdgeBERT
methodology, we conduct our evaluation on the four GLUE tasks
with the largest corpora, which cover all three GLUE categories: SST-
2 (Single-Sentence), QQP (Similarity and Paraphrase), and QNLI
and MNLI (Inference).

2.2 Variations of BERT
Since the advent of BERT with 110M parameters, a number of
variants were proposed to alleviate its memory consumption or to
further improve its prediction metrics. RoBERTa [44] generalizes
better on several GLUE tasks by training on significantly more data,
and for a longer amount of time, but remains as computationally
intensive as BERT. DistilBERT [63] and MobileBERT [70] leverage
knowledge distillation to reduce BERT size by 1.7× and 4.3×, re-
spectively, with iso-accuracy. SqueezeBERT [29] substitutes several
operations in the Transformer encoder with 1D grouped convolu-
tions achieving 4× speedup while being 2× smaller. Q8BERT [89]
employs a symmetric linear quantization scheme for quantizing
both weights and activations into 8-bit integers. In contrast, in
this work we leverage the higher dynamic range of floating-point
encodings for greater quantization resilience. ALBERT [37] yields
the smallest footprint to date for a compressed BERT variant with
only 12M parameters, with competitive accuracy on the GLUE
benchmarks.

Fig. 2 summarizes the key differences between the ALBERT
model and the base BERT model. While each of BERT’s twelve
encoder layers have a unique set of weights, ALBERT’s encoder
layers instead share and reuse the same parameters – resulting in
significant compression. The encoder block in both models has the
same architecture as the legacy Transformer network [75], but with
twelve parallel self-attention heads. Moreover, ALBERT employs
a smaller embedding size (128 vs. 768) thanks to factorization in
the embedding layer. In this work, we adopt the ALBERT variant
as an efficient baseline. This work further pursues strategies to re-
duce latency and storage requirements to suit embedded hardware
platform constraints.

3 ALLEVIATING TRANSFORMER MEMORY
AND COMPUTATION COSTS

An accelerator’s energy consumption can be abstracted as:

Enerдy ∝ αCV 2
DDNcycles

where α , C , VDD and Ncycles are the switching activity factor,
the effective wire and device capacitance, the supply voltage, and
the required number of clock cycles to complete the inference,

Identical
parameters

per layer

E=128

BERT

E=768 Embedding Layer

Input Tokens

Transformer Encoder
Layer 1

Transformer Encoder
Layer 2

Transformer Encoder
Layer 12

Final Classifier

(a)

Unique
parameters

per layer

ALBERT

Embedding Layer

Input Tokens

Transformer Encoder
Layer 1

Transformer Encoder
Layer 2

Transformer Encoder
Layer 12

Final Classifier

(b)
Figure 2: Comparison between (a) BERT, and (b) ALBERT
base models. ALBERT uses a smaller embedding size and its
Transformer encoder layers share the same parameters.

respectively. While the DVFS algorithm (Sec. 5.2) lowers the energy
quadratically by bringing VDD down to the lowest optimal voltage,
in this section, we explore avenues to further reduce the energy by
minimizing α , C , and Ncycles .

For this purpose, we carefully incorporate into the multi-task
ALBERT inference: 1) adaptive attention span predication and early
exit which reduce Ncycles ; 2) network pruning, which ultimately
reduces α ; and 3) floating-point quantization helping decrease C ,
altogether with minimal accuracy degradation. While briefly de-
scribing these optimizations individually in this section, we provide
a reasoned methodology for applying them to the ALBERT model,
as shown in Fig. 3.

3.1 Entropy-based Early Exit
The motivation behind early exit (EE) is to match linguistically com-
plex sentences with larger (or deeper) models and simple sentences
with smaller (or shallower) models [13, 87]. This is typically done
by adding a lightweight classifier at the output of the Transformer
layer so that a given input can exit inference earlier or later in
the stack, depending on its structural and contextual complexity.
The classifier computes and compares the entropy of an output
distribution with a preset “confidence" threshold, ET , in order to
assess whether the prediction should exit or continue inference in
the next Transformer encoder layer. The entropy metric quantifies
the amount of uncertainty in the data. Smaller entropy values at
a Transformer layer output implies greater confidence in the cor-
rectness of the classification result. The entropy H on sample x is
estimated as:

H (x) = −
∑

p(x) logp(x) = ln(
n∑

k=1
exk) −

n∑
k=1

xke
xk

n∑
k=1

exk
(1)

The early exit condition is met when H (x) < ET . Therefore, the
larger ET becomes, the earlier the sample will exit (i.e. Ncycles
becomes smaller) with potentially lower accuracy.

In this work, we modify the conventional EE inference approach
by predicting the early exit layer from the output of the first Trans-
former layer in order to run the rest of the network computation
in an energy-optimal and latency-bounded manner (Sec. 5).

832

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Tambe, et al.

Input Sentence

Transformer Encoder
Layer 1

Transformer Encoder
Layer 2

Transformer Encoder
Layer 12

Final Classifier

Embedding Layer

Transformer Encoder
Layer 3

No

Network Pruning

Floating-Point Quantization

Early
Exit

Normalization

Normalization

Feed Forward
Network

Attention Head
12x

Concat + Linear Layer

Residual
Connection

Residual
Connection

Q K

MatMul

Scale

SoftMax

Adaptive
Mask

V

MatMul

Pre-Mask

Post-Mask

Adaptive Attention Span

eNVM Storage

1

0
!

"!(!)

%
Learnable Attention

Span Parameter

Pre-Attention
Linear Layer

12x

Entropy() < TE

Target
Entropy

Early Exit
Predictor

(LUT)

DVFSTarget
Latency

Yes

Early exit off-ramp

!""!"#
	$%&'!"#

Figure 3: Memory and latency optimizations incorporated in the EdgeBERT methodology. Each self-attention head learns
its own optimal attention span. Network pruning is performed on all Transformer encoders. The embedding layer is stored
in non-volatile memory. Floating-point quantization is applied to all weights and activations. During real-time on-device
execution, DVFS is performed for latency-bounded inference.

3.2 Adaptive Attention Span
The attention mechanism [8] is a powerful technique that allows
neural networks to emphasize the most relevant tokens of informa-
tion when making predictions. The base ALBERT model contains
up to twelve parallel attention heads – each learning their own
saliency weights on the full length of the encoder input. However,
depending on the complexity of the task, many heads can be redun-
dant and can be safely removed without impacting accuracy [51].
Furthermore, the cost of computing the attention mechanism scales
quadratically with the sequence length. Therefore, there is poten-
tially a meaningful amount of computations and energy to be saved
in optimizing the inspection reach of every attention head.

In the quest to avoid needless attention computations in ALBERT,
a learnable parameter z is introduced in the datapath of each self-
attention head in order to find its own optimal attention span [69].
The parameter z is mapped to a masking function with a [0, 1]
output range, as shown in Fig. 3. The masked span is then applied
on the attention weights in order to re-modulate their saliencies.
The optimal span is automatically learned during the fine-tuning
process by adding back the average loss from the reduced span to
the training cross-entropy loss.

The maximum sentence length for fine-tuning the GLUE tasks
is 128. As a result, shorter sentences are typically zero-padded to
128 during the tokenization pre-processing. Table 1 shows the final
attention span learned by each self-attention head when fine-tuning
with the adaptive attention span technique. Strikingly, the twelve
parallel self-attention heads in ALBERT do not need to inspect their
inputs at maximum span. In fact, more than half of the attention
heads, 8 for MNLI and QQP and 7 for SST-2 and QNLI, can be
completely turned off with minimal accuracy loss. This amounts to
a 1.22× and 1.18× reduction, respectively, in the total number of
FLOPS (which linearly correlates with Ncycles) required for single-
batch inference.

The twelve attention spans, learned during fine-tuning, are writ-
ten to registers in the EdgeBERT accelerator in the form of a 128-
wide vector – in order to predicate on the inference computation
of the multi-head attention. Notably, all the computations inside

Table 1: Learned spans of every attention head in AL-
BERT. Baseline Acc: MNLI=85.16, QQP=90.76, SST-2=92.20,
QNLI=89.48

Attention Head # Avg.
Span Acc. Diff.1 2 3 4 5 6 7 8 9 10 11 12

MNLI 20 0 0 0 0 0 36 81 0 0 0 10 12.3 85.11 -0.05
QQP 16 0 0 0 0 0 40 75 0 0 0 2 11.0 90.80 0.04
SST-2 31 0 0 0 0 101 14 5 0 36 0 0 15.6 91.99 -0.21
QNLI 39 0 0 0 0 105 22 19 0 51 0 0 19.6 88.92 -0.56

any of the twelve attention head units can be effectively skipped
in case its associated attention span mask is 100% null. The Edge-
BERT accelerator takes advantage of this observation in a proactive
manner during inference in the custom hardware (Sec. 7.4.1).

3.3 Network Pruning
The EdgeBERT hardware accelerator (Sec. 7) executes sparse compu-
tations and saves energy by gating MACs whenever input operands
are null. Therefore, the extent to which we can prune the ALBERT
model, without appreciable accuracy loss, determines the overall
accelerator energy efficiency.

In this work, we consider both movement pruning [64] and the
well-known magnitude pruning [25] methods. Movement pruning
is a first-order pruning technique that is applied during model fine-
tuning which eliminates weights that are dynamically shrinking
towards 0 (i.e., according to the movement of the values). In some
cases, magnitude pruning may be a sub-optimal method to use
during transfer learning, as pre-trained weights closer to zero may
have a high chance of being eliminated regardless of the fine-tuning
requirement. We observe that movement pruning particularly out-
performs magnitude-based pruning in high sparsity regimes, as
each individual remaining weight becomes more important to learn
the task at hand. Therefore, choosing between the two pruning
techniques would depend on the per-task tolerance to increasing
sparsity levels. We note that magnitude pruning is always applied
to the ALBERT embedding layer in order to enforce uniformity
in the data during multi-domain on-chip acceleration – as using
movement pruning on the embedding layer would make its weights
unique for each NLP domain, thereby forgoing opportunities for
data reuse in hardware.

833

EdgeBERT: Sentence-Level Energy Optimizations for Latency-Aware Multi-Task NLP Inference MICRO ’21, October 18–22, 2021, Virtual Event, Greece

3.4 Floating-Point Quantization
DNN algorithmic resilience allows for parameters to be represented
in lower bit precision without accuracy loss. Fixed-point or inte-
ger quantization techniques, commonly adopted in CNN models,
suffer from limited range and may be inadequate for NLP models,
whose weights can be more than an order of magnitude larger [72].
This phenomenon is owed to layer normalization [7], which is com-
monly adopted in NLP models and has invariance properties that do
not reparameterize the network – unlike batch normalization [30],
which produces a weight normalization side effect in CNNs.

In this work, we employ floating-point based quantization,
which provides 2× higher dynamic range compared to integer
datatypes [32]. Both weights and activations are quantized across
ALBERT layers to 8-bit precision. We also performed a search on
the optimal exponent bit width to satisfy the dynamic range require-
ments of the ALBERT model. Setting the floating-point exponent
space to 4 bits within the 8-bit word size, with the exponent be-
ing scaled at a per-layer granularity, provided the best accuracy
performance across NLP tasks.

4 NON-VOLATILE MEMORY STORAGE OF
SHARED PARAMETERS

In contrast to task-specific encoder weights, word embedding pa-
rameters are deliberately fixed during fine-tuning and reused across
different NLP tasks.We seek to avoid the energy and latency costs of
reloading the word embeddings from off-chip memory for different
tasks by storing these shared parameters in embedded non-volatile
memories (eNVMs). eNVM storage also enables energy-efficient
intermittent computing because the embedding weights will be
retained if and when the system-on-chip powers off between infer-
ences. However, despite their compelling storage density and read
characteristics, eNVMs exhibit two main drawbacks: potentially
high write cost (in terms of energy and latency) and decreased
reliability, particularly in multi-level cell (MLC) configurations [15].
Fortunately, the word embeddings are acting as read-only parame-
ters on-chip, which makes them highly suitable for eNVM storage,
but previous work highlights the need to study the impacts of faulty,
highly-dense ReRAM storage on DNN task accuracy [56]. On the
other hand, encoder weights need to be updated when switching
across different NLP tasks. To prevent the energy and latency degra-
dation that would follow from updating the encoder weight values
in eNVMs, we map the natural partition of shared and task-specific
parameters to eNVMs and SRAMs, respectively [17].

4.1 eNVMModeling Methodology
This work specifically considers dense, energy-efficient Resistive
RAM (ReRAM) arrays [10, 43] as an on-chip storage solution for
shared embedding parameters. We selected ReRAMs for their rela-
tive maturity and demonstrated read characteristics. However, we
note that there is a larger design space of opportunities to be ex-
plored with other emerging MLC-capable NVM technologies such
as PCM [14], but is beyond the scope of this work.

We evaluate the robustness of storing the 8-bit quantized word
embeddings in eNVM storage. In order to quantify the trade-offs
between storage density and task accuracy, we use cell characteris-
tics of 28nm ReRAM programmed with varying number of bits per

Table 2: Results of fault injection simulations modeling
impact of ReRAM embedding storage on task accuracy.
SLC=single-level cell (1 bit per cell). MLC2= 2 bits per cell.
MLC3 = 3 bits per cell.

SLC MLC2 MLC3
mean min mean min mean min

MNLI 85.44 85.44 85.44 85.44 85.42 85.25
QQP 90.77 90.77 90.77 90.77 90.75 90.61
SST-2 92.32 92.32 92.32 92.32 91.86 90.83
QNLI 89.53 89.53 89.53 89.53 88.32 53.43

Area Density
(mm2/MB) 0.28 0.08 0.04

Read Latency
(ns) 1.21 1.54 2.96

Algorithm 1: Conventional early exit inference
Input: ET := target entropy
for input sentence i = 0 to n do

for encoder layer l = 1 to 12 do
zl = f (x ; θ |VDDnom, Freqmax)
if entropy(zl) < ET then

exit inference

cell [15], and evaluate 100 fault injection trials per storage configu-
ration to identify robust eNVM storage solutions. We leverage and
extend Ares [59], which is an existing open-source fault injection
framework for quantifying the resilience of DNNs.

After pruning, we store non-zero compressed embedding
weights using a bitmask-style sparse encoding. Previous work
demonstrates that DNN weight bitmask values are vulnerable to
MLC faults, so the bitmask is protectively stored in lower-risk SLC
devices, while we experiment with MLC storage for the non-zero
data values [56].

4.2 Optimal eNVM Configuration
Table 2 uncovers exceptional resilience to storing word embeddings
in MLC ReRAM. Across many fault injection trials, we observe that
MLC2 (ReRAM programmed at 2 bits-per-cell) does not degrade
accuracy across multiple tasks, while MLC3 exhibits potentially
catastrophic degradation in minimum accuracy and an apprecia-
ble decline in average accuracy for the QNLI task, highlighted in
bold. Based on this observation, the EdgeBERT accelerator system
leverages MLC2 ReRAMs for word embedding storage (Sec.7).

5 EDGEBERT’S LATENCY-AWARE
INFERENCE

The conventional BERT inference (Algorithm 1) with early exit
(EE) can significantly reduce BERT inference latency. To further
reduce the energy consumption for NLP inference, a latency-aware
inference scheme leveraging the EE predictor and dynamic voltage
and frequency scaling (DVFS) is proposed to minimize end-to-end
per-sentence energy consumption while satisfying the real-time
latency target.

834

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Tambe, et al.

Algorithm 2: EdgeBERT latency-aware inference. Compu-
tations exit at the predicted exit layer or earlier.
Input: T := per-sentence latency target, ET := entropy target

for input sentence i = 1 to n do
for encoder layer l = 1 do

zl = f (x ; θ |VDDnom, Freqmax)
if entropy(zl) < ET then

exit inference

else
Lpredict = LUT (entropy(z1), ET)

VDDopt , Freqopt = DV FS (Lpredict , T)

for encoder layer l = 2 to Lpredict do
zl = f (x ; θ |VDDopt , Freqopt)
if entropy(zl) < ET then

exit inference

exit inference

5.1 Methodology
DVFS is a widely used technique to dynamically scale down the
voltage and frequency for less computationally intensive workloads.
In the past, DVFS has been widely deployed in commercial CPUs
[74], [28] and GPUs [50]. However, these schemes typically adjust
the voltage and frequency at a coarse granularity at workload-
level. In the era of AI, DVFS has started to be explored for DNN
accelerators [38]. For example, a recent state-of-the-art AI chip
has reported per-layer DVFS to save energy [3]. In this work, we
explore a fine-grained sentence-level DVFS to reduce the energy
consumption for NLP inference while meeting the latency target.

The proposed early exit -based latency-aware inference method-
ology is illustrated in Algorithm 2. The inference of a sentence
starts at nominal voltage and maximum frequency, and the entropy
value is calculated at the output of the first Transformer encoder
layer. The entropy result is then sent to a trained classifier (EE
predictor) to predict which following encoder layer should early
exit (e.g. early exit at encoder layer 6 before the final encoder layer
12). Based on the predicted early exit layer, the voltage and fre-
quency is scaled down to proper energy-optimal setting for the
rest of encoder layers (e.g. encoder layer 2 to 6) while meeting the
latency target for each sentence. This scheme produces a quadratic
reduction in the accelerator power consumption.

In our work, the EE predictor is a ReLU-activated five-layer
perceptron neural network with 64 cells in each of the hidden layers.
It takes the entropy of encoder layer 1 as input and forecasts the
early exit Transformer layer which has an entropy below the desired
threshold. The neural network architecture of the EE predictor was
empirically searched with the goal of minimizing the difference
between the predicted and the true entropy-based exit layer. For
this purpose, we constructed parallel training and test datasets
containing the entropy values at the output of the 12 Transformer
layers during evaluation on the GLUE benchmarks.

The EE predictor is distilled as a lookup table (LUT) leading to
negligible one-time (per-sentence) computational overhead. Fur-
thermore, implementing the EE predictor as a LUT simplifies its
hardware operation. As the neural network based LUT is error-
prone, it may predict a higher exit layer than necessary. Therefore,
during the inference, the entropy is checked after each encoder layer
for early stopping until the predicted layer. If the computed entropy
becomes lower than the exit threshold before the predicted encoder

…

Knowledge Distillation (KD):

Netwwork Pruning (NP):

Encoder

Teacher

Training Procedure

Input

…

Evaluation
Procedure

Classifier

1st phase:
Training w/ KD, NP, and AAS

Hwy off-ramps
fine-tuned

Encoder

Encoder

Embedding

…

Classifier

Encoder

Embedding

Student

2nd phase:
Student’s model
weights frozen

…

Classifier

Embedding

Input

Encoder

Encoder

Encoder

Encoder

Encoder

Evaluation Legend
8-bit FP Quantization:

NVM Modeling:

Span Masking
on Attn. Weights:

<

<

<Adaptive Attn. Span (AAS):

Highway Off-Ramps:

Early Exit Checker:
Highway Off-Ramps:

Training Legend

Figure 4: EdgeBERT training and evaluation procedure.
layer, the inference will terminate at that early exit condition point.
In case the inference reaches the predicted layer, termination oc-
curs even if the entropy at that layer is still higher than the exit
threshold in order to not violate timing constraints.

When assessing the impacts of using entropy prediction instead
of traditional EE methods, we set a fixed accuracy degradation
threshold of 1%, 2%, or 5% (relative to the inference accuracy of
the full ALBERT model) and increased the entropy threshold until
the accuracy dropped to the desired threshold. This allowed us
to compare energy savings between entropy prediction and con-
ventional EE for a fixed accuracy target. For the same accuracy
threshold, the entropy threshold for entropy prediction was lower
than the entropy threshold for conventional EE, leading to a slightly
later average exit layer during inference. However, entropy predic-
tion allows for DVFS since the maximum exit layer is known after
the first layer, whereas with the conventional EE appproach, the
maximum exit layer is always the final encoder layer. EdgeBERT
latency-aware inference therefore achieves greater energy savings
than the conventional EE approach by facilitating DVFS (Sec. 8.2.2).

5.2 On-chip DVFS system
To realize fast per-sentence DVFS, the on-chip DVFS system is
developed and integrated within EdgeBERT. The DVFS system in-
cludes a DVFS controller, an on-chip synthesizable linear voltage
regulator (LDO), and an all-digital PLL (ADPLL). Compared with
the conventional workload-level DVFS [74], the proposed scheme
adjusts voltage and frequency at a finer-grained sentence-level
granularity. Based on the predicted early exit layer from the EE
predictor, the required run cycles, Ncycles , for the rest of the en-
coder layers before early exit can be known. And, knowing the
frontend elapsed time Telapsed up to the EE predictor within the
per-sentence latency target T , the optimal running frequency can
be calculated as follows:

Freqopt = Ncycles/(T −Telapsed)

Meanwhile, the corresponding energy-optimal supply voltage,
VDDopt , is selected by the DVFS controller to achieve the lowest
operational voltage value at Freqopt . In the EdgeBERT accelera-
tor system, this is done via indexing the look-up table containing

835

EdgeBERT: Sentence-Level Energy Optimizations for Latency-Aware Multi-Task NLP Inference MICRO ’21, October 18–22, 2021, Virtual Event, Greece

Table 3: Summary of optimization results in terms of achiev-
able sparsity, attention span with early exit performance
and accuracy implications. Baseline Acc: MNLI=85.16,
QQP=90.76, SST-2=92.20, QNLI=89.48

Conventional
EE Approach

EdgeBERT Latency-Aware
Inference

Embedding
Sparsity

(%)

Encoder
Sparsity

(%)

Avg.
Attn.
Span

Pct. Pt.
Acc. Drop

Entropy
Threshold

Avg.
Exit
Layer

Entropy
Threshold

Avg.
Predicted
Exit Layer

Avg.
Actual

Exit Layer

MNLI 60 50 12.7
1% 0.4 8.55 0.31 11.00 8.91
2% 0.49 8.00 0.34 10.52 8.61
5% 0.65 6.89 0.47 8.37 7.34

QQP 60 80 11.3
1% 0.25 5.84 0.12 8.88 6.41
2% 0.32 5.28 0.15 7.65 5.84
5% 0.43 4.31 0.26 5.94 4.76

SST-2 60 50 18.4
1% 0.23 4.30 0.09 7.78 5.25
2% 0.28 3.94 0.16 4.91 3.90
5% 0.46 2.70 0.28 3.65 3.05

QNLI 60 60 21.5
1% 0.18 8.46 0.13 12 9.07
2% 0.29 7.38 0.15 10.22 8.32
5% 0.44 5.89 0.25 8.01 6.85

the ADPLL frequency/voltage sweep coordinates. The DVFS is per-
formed for each real-time sentence inference due to its fast response
time; the implementation details are shown in Sec. 7.4.3.

6 ALGORITHMIC SYNERGY
In order to quantify the different tradeoffs, and evaluate the syner-
gistic impact on the model accuracy from the memory and latency
optimizations, the eNVM modeling, and the EE predictor, we imple-
mented the training and evaluation procedures illustrated in Fig. 4
on the base of HuggingFace’s Transformers infrastructure [85].
6.1 Training and Evaluation Procedure
The training methodology consists of two phases. In the first phase,
the model is pruned during fine-tuning: magnitude pruning is ap-
plied to the embedding layer and either movement or magnitude
pruning is applied to the Transformer encoder layer. An additional
loss term comes from knowledge distillation using the base ALBERT
model fine-tuned on the target task as a teacher. The embeddings
and the encoder layer are subject to separate pruning schedules. At
the same time, the attention heads learn their optimal spans. In the
second training phase, we freeze the model’s parameters prior to
fine-tuning the early exit highway off-ramps.

At evaluation time, 8-bit floating-point quantization is applied on
all the weights and activations. The quantized embedding weights
are modeled according to a 2-bit per cell multi-level (MLC2) ReRAM
NVM configuration. The learned attention span mask is element-
wise multiplied with the attention weights to re-modulate their
saliencies. Entropy prediction is then deployed along with early
exit during inference according to Algorithm 2.
6.2 Impact on Model Accuracy, Computation,

and Storage
Using the multi-step procedure illustrated in Fig. 4, we amalgamate
into ALBERT the various memory and latency reduction techniques
at training and evaluation times. Table 3 summarizes the gener-
ated benefits of the synergistic inference with the following main
observations:

• EdgeBERT latency-aware inference provides comparable
average exit layer for the same accuracy threshold as the
conventional EE approach, while allowing the DVFS algo-
rithm to reduce the frequency and voltage in accordance
with the predicted exit layer.

• The EdgeBERT approach requires a lower entropy threshold
than the conventional EE approach for the same accuracy

Attention
Head

Softmax

Key

Query

Value

…
…

Layer Norm.

GELU Layer Norm.

Feed-Forward
Network

Concat

128 x 64
Transpose

128 x 64
128 x 64

128 x 64

128 x 3072

128 x 768128 x 768

768 x 768

768 x 64

768 x 64

64 x 128

128 x 128

128 x 128

3072 × 768

768 x 64

768 × 3072

Attention Output
(128 × 768)

Input Ids
(128 × 768)

FFN Output
(128 × 768)

128 x 768

Activation OperationWeight

12x

Attention
Span Mask
128 x 128

Figure 5: Computations inside the Transformer encoder
with attention span modulation. Here, the input sequence
is composed of 128 tokens. To simplify the computational
diagram, the bias layers are not included.

target; this demonstrates that the we must predict conserva-
tively due to the classification error introduced by the neural
network-based entropy predictor.

• Across the four corpora, a uniform 40% density in the em-
bedding layer is achieved, establishing a compact memory
baseline of 1.73MB to be stored in eNVMs.

7 THE EDGEBERT HARDWARE
ACCELERATOR SYSTEM

7.1 Required Computations in ALBERT
The Transformer encoder is the backbone of ALBERT/BERT, con-
sumingmore than 95% of inference computations. Fig. 5 summarizes
the computations required in this unit. Assuming a sentence length
of 128, the transformer encoder requires 1.9GFLOPs to compute ma-
trix multiplications, layer normalizations, element-wise operations
(add, mult.), and softmax. The attention span mask learned during
fine-tuning is element-wise multiplied with the softmax output. No-
tably, all the computations inside any of the twelve attention head
units can be effectively skipped in case its associated attention span
mask is 100% null. The EdgeBERT accelerator reaps this benefit by
enforcing adaptive attention span masking during fine-tuning.

7.2 The EdgeBERT Accelerator System
In order to maximize the benefits of the latency and memory re-
duction techniques during latency-aware inference, we designed
a scalable accelerator system that exploits these algorithms for
compute and energy efficiency with the following key highlights:

• Specialized datapath support for (i) early exit assessment,
(ii) softmax and attention span masking, and (iii) layer nor-
malization. We notably reformulate their mathematical def-
initions in order to avoid numerical instability, and where
possible, hardware components with long cyclic behaviors
such as divisions.

836

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Tambe, et al.

Input / Weight
Mask 0
(16 KB)

Read and Decode

Bit-mask Decoder 0

Input / Weight
Buffer 1
(128 KB)

Input / Weight
Mask 1
(16 KB)

Read and Decode

Bit-mask Decoder 1

. . . .
mat_in1

(n * n)

mat_in0
(n * n)

Datapath: n2 FP Vector MACs

VMAC 0

VMAC 1

VMAC n-1

.
.

.
.

Encoder

Bit-mask Encoder

Accumulate

Data

✚

Mask

mat_out
(n * n)

Gate MAC for
null vectors

>>

Input/Weight
Buffer 0
(128 KB)

. . . .

mat_accum
(n * n)

Write <Mask:Data>

LayerNorm Params

Attention Span Mask

Entropy Predictor LUT

Auxiliary Buffer (32 KB)

Activation
Unit

SoftMax &
Attention Masking

Early Exit
Assessment

Layer
Normalization

Elem-Wise
Add

DVFS
Controller

Controller

Read Mask
Input
Setup

Special Function Unit

EdgeBERT
Accelerator System

SoC
NoC

CLK

VDD

ADPLL

LDO

AXI-S

AXI-S

AXI
Splitter

ReRAM Buffer
(2 MB)

Read Mask

DVFS LUT

Processing Unit

in1[0]in0[0]
Vector Size = n

in1[1]in0[1] in1[n-1]in0[n-1]

mantexp

<<

mantexp

<<

…
mantexp

<<

✚

✚ ✚⨯ ⨯ ✚ ⨯

FP Vector MAC

Host CPU

IRQ

SFU Controller

Figure 6: The EdgeBERT hardware accelerator system highlighting its processing unit (PU), and special function unit (SFU).
A fast-switching LDO and fast-locking ADPLL are also integrated for latency-driven DVFS.

• Non-volatile and high density storage of the shared multi-
task parameters substantially improves the accelerator’s en-
ergy and area efficiency (Sec. 8.3).

• On-demand DVFS aided by the integration of a fast-locking
ADPLL and a fast-switching LDO regulator.

• Compressed sparse execution via bitmask encoding.

The EdgeBERT hardware accelerator, illustrated in Fig. 6, con-
sists of a processing unit (PU), a special function unit (SFU), a
LDO and ADPLL for latency-bounded DVFS. The communication
between the PU and SFU occurs via a custom-built bi-directional
streaming channel. An AXI splitter arbitrates the CPU-controlled
flow of instructions and data bound for the PU and SFU AXI-slave
partitions. The multi-task embedding pruned weights and corre-
sponding bitmask are stored in a 2MB ReRAM NVM buffer in order
to avoid reloading them when powered on. Specifically, the bitmask
embedding values are stored in a single-level cell (SLC) ReRAM
configuration while the nonzero embedding parameters are kept in
a 2-bit per cell (MLC2) ReRAM structure, according to the learnings
from the NVM studies (Sec. 4).

7.3 Processing Unit
The processing unit (PU) is designed to execute matrix-matrix
multiplications in linear layers and attention heads of ALBERT.

In the PU datapath in Fig. 6, n defines the number of parallel
floating-point vector MACs (VMAC) and the vector size of each
VMAC. So, there are n2 MAC units in total. The PU datapath takes
two n ∗n matrices as input and computes n ∗n ∗n MAC operations
in n clock cycles. We use 8-bit floating point as the input and weight
data type as no accuracy degradation was observed, and 32-bit fixed-
point during accumulation. The PU accumulator sums activation
matrices and quantizes the final matrix back to 8-bit floating-point.

To exploit sparsity in both input and weight matrices, we (1)
adopt bit-mask encoding and decoding for compressing and decom-
pressing the sparse matrix, and (2) implement skipping logic in the

datapath. Bit-masks are binary tags to indicate zero and non-zero
entries of a matrix so that only non-zero entries are stored in the
decoder SRAM scratchpads. For every cycle during decoding, a size
n vector is fetched and decoded. The decoder first reads an-bit mask
from the single-banked mask buffer to figure out what bank in the
n-banked input can be neglected, and inserts zero values back to
the original zero entries. The encoder also takes a similar approach.
It creates a bit mask vector and removes zero entries from the data
vector before sending the compressed mask and data vector to one
of the PU decoder blocks. To save energy, the PU datapath skips
the computation of a VMAC product-sum if one of the operand vec-
tors contains only zero values. Although the cycle-behavior of the
datapath is not affected by the sparsity of inputs due to the fixed
scheduling of data accesses and computations, skipping VMAC
operations saves up to 1.65× in energy consumption (Sec. 8.2).

7.4 Special Function Unit
The special function unit (SFU) contains specialized datapaths that
compute the EE assessment, DVFS control, element-wise addition,
layer normalization, and softmax, all of which get invoked during
the latency-aware EdgeBERT inference. The SFU also integrates a
32KB auxiliary buffer to house the EE and DVFS LUTs, the layer
normalization parameters, and the multi-head attention span masks
learned during the fine-tuning process. All the computations in the
SFU are in 16-bit fixed-point format.

7.4.1 Computing the Multi-Head Attention.
While the linear layers for the attention query, key and value ten-
sors are computed in the PU, the proceeding softmax operation is
optimized in the SFU softmax unit.

First, prior to computing an attention head, the SFU controller
inspects its associated attention span mask in the auxiliary buffer.
In case the attention span mask for an attention head is null, the
SFU controller proactively cancels and skips entirely the sequence
of computations required for that head, and directly writes zero in

837

EdgeBERT: Sentence-Level Energy Optimizations for Latency-Aware Multi-Task NLP Inference MICRO ’21, October 18–22, 2021, Virtual Event, Greece

Algorithm 3: Computing Softmax and Attn. Span Masking
Input: attention matrix A, and mask AM of size (T ∗T)
Output: masked softmax output matrix AO
T := number of tokens; n := tile size;
for i = 0 to T − 1 do

// Step 1: compute max value
max = −∞

for j = 0 to T − 1 do
vec <= load (A[i][n∗j :n∗j+n−1])
ifmax < max (vec) then

max =max (vec)

// Step 2: compute log-exponential-sum
sumexp = 0
for j = 0 to T − 1 do

vec <= load (A[i][n∗j :n∗j+n−1])
sumexp+ = sum(exp(vec −max))

loдsumexp = ln(sumexp)
// Step 3: Get softmax and modulate with attn span mask
for j = 0 to T − 1 do

vec <= load (A[i][n∗j :n∗j+n−1])
mask <= load (AM [i][n∗j :n∗j+n−1])
vec = exp(vec −max − loдsumexp)
vec = vec ∗mask
store(vec) => AO [i][n∗j :n∗j+n−1]

the corresponding logical memory for its context vector stored in
one of the PU decoder blocks.

In case the attention span mask for a head contains non-zero
elements, the softmax unit takes advantage of the LogSumExp [19]
and Max [48] tricks to vectorize the computation of the softmax
function SM() as:

SM(Ak) = exp[Ak −MAXk (A)−ln(
K∑
k=1

exp(Ak −MAXk (A)))] (2)

By doing so, the hardware prevents numerical instability stemming
from exponential overflow, and avoids the computationally inten-
sive division operation from the original softmax function. Upon
completing the softmax operation, the softmax unit then performs
element-wise multiplication between the resulting attention scores
and the attention span mask as described in Algorithm 3.

7.4.2 Performing Early Exit Assessment.
The EE assessment unit computes the numerically-stable version
of the entropy function from equation 1 as follows:

H (xk) = ln(
n∑

k=1
exk−MAXk (x)) −MAXk (x) −

n∑
k=1

xke
xk−MAXk (x)

n∑
k=1

exk−MAXk (x)

(3)
The EE assessment unit then compares the result with the register
value for the entropy threshold. If the EE condition is met, the
unit then triggers the accelerator’s interrupt (IRQ). Otherwise, the
SFU controller initiates the computation of the next Transformer
encoder. In the case of latency-aware inference in intermittent
mode, the EE assessment unit also indexes the EE predictor LUT
stored in the auxiliary buffer in order to acquire the predicted exit
layer value, which is then passed on to the DVFS controller.

7.4.3 DVFS System.
During each sentence inference, the DVFS FSM algorithm keeps
track of the EE predictor result and manages the operating voltage
and frequency accordingly. Based on the predicted early exit layer,

0.45

0.55

0.65

0.75

0.85

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Vo
lta

ge
 (

V)

Time (ms)

(Layer 1)

Exit at
layer 8

0.7V
EE at

layer 5
0.65V

0.7V
(Predicted Layer 8)

Sentence 1 Sentence 2 Sentence 3

Ttarget = 50ms

(Predicted Layer 6)
(Predicted Layer 8)

EE at
layer 7

Ttarget = 50ms
Ttarget = 50ms

Texecution = 50ms Texecution = 45ms Texecution = 45ms

0.65

0.7

0.75

0.8

5000 5050 5100 5150 5200 5250 5300

Vo
lta

ge
 (V

)

Time (ns)
0 50 100 150 200 250 300

Inter-sentence Transition

Sentence 4

Sentence 3

0.45

0.55

0.65

0.75

0.85

100 150 200 250 300 350 400

Vo
lta

ge
 (V

)

Time (ns)

Standby
0.5V Wakeup

Event

Sentence 1
(Layer 1)

0.79V
Event-Driven Wakeup

0 50 100 150 200 250 300

Figure 7: Spice simulations of LDO dynamic voltage adjust-
ments. The LDO stabilizes voltage transitions within 100ns.
the DVFS controller indexes the logical memory for the V /F LUT
table in the auxiliary buffer and extracts the lowest corresponding
supply voltage value, VDDopt . At the same time, the DVFS con-
troller simultaneously updates the ADPLL and LDO configuration
registers with settings for Freqopt and VDDopt , respectively.

The synthesizable LDO is implemented using standard power
header cells [9], and evenly distributed across the EdgeBERT accel-
erator. The LDO is able to scale the accelerator voltage from 0.5V
to 0.8V with a 25mV step. With careful power header selection and
layout resistance optimization, the LDO can achieve nearly linear
scaled power efficiency and a fast response time of 3.8ns/50mV.
The ADPLL is also implemented using all-synthesizable approach
with the PLL architecture from the FASoC open-source SoC design
framework [4]. Following a frequency update request, the all-digital
PLL can relock the frequency in a fast speed with low power con-
sumption. The 12nm performance specs of the LDO and ADPLL
are shown in Table 4.

Table 4: Performance specs of LDO and ADPLL

LDO response time 3.8ns/50mV
LDO peak current efficiency 99.2% @ Iload,max

LDO Iload,max 200mA
ADPLL power 2.46mW@1GHz

Fig. 7 show the spice-level simulation of the DVFS for a con-
secutive sequence of sentence inference. For each sentence, the
entropy is calculated after the computation of Encoder 1 and sent
to the EE predictor to forecast the early exit layer. Based on the
predicted early exit encoder and latency requirement for the sen-
tence, the DVFS controller select the lowest voltage level and proper
frequency to meet the latency requirement Ttarдet . Therefore, the
remaining encoder stages will compute at a lower voltage level to
save energy. For example, the sentence 1 of Fig. 7, the early exit
layer is predicted as 8. Therefore, the rest Encoders (i.e encoder 2-8)
in sentence 1 are computed under a lower voltage 0.7V.

After the inference of the first sentence, the voltage level ramps
back to nominal 0.8V for the computation of layer 1 in the following
sentence. As on-chip integrated LDO is used, the transition and
settling time is optimized to be within 100ns, which is negligible

838

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Tambe, et al.

129

8.848.84 8.848.84

5.20
4.05

4.86

8.12

4.71
3.62 4.264.87

2.75 2.12 2.47

0.795

0.017
0.014

5.20

0.206

0.66

0.172

4.05

0.056

0.160

0.047

4.86

0.795 0.7950.795

129 129 129

0.160

8.12

4.71
3.62 4.26

113

5.69

3.14
2.34 2.61

0.206

0.056

0.66

0.017

0.172

0.047

0.014

0.140

5.20

8.20

3.58 4.05
4.77

6.37

3.07
4.86

3.66 4.32
2.68

5.20
4.05

4.86

113
119 119

0.206

0.056

0.017

0.675

0.176

0.048

0.015

0.148

8.20

4.324.77
3.66

5.69

2.613.12 2.31

0.206

0.048

0.675

0.175

0.056

0.0170.016

0.1600.140 0.160 0.148

Figure 8: Average latency (top row) and energy (Bottom row) per sentence as the PU MAC vector size scales at max frequency
(1GHz) and nominal voltage (0.8V), highlighting impact of adaptive attention span (AAS), and sparsity in weights and activa-
tions (Sparse) on the EdgeBERT accelerator and TX2 mGPU. MAC size of 16 yields the most energy efficient design.

LAI LAI+AAS+Sparse LAI LAI+AAS+Sparse LAI LAI+AAS+Sparse LAI LAI+AAS+Sparse

Figure 9: Average DVFS-driven supply voltage (top row) and clock frequency (middle row), as well as, generated energy expen-
ditures (bottom row) of the EdgeBERT accelerator systemwith n = 16 during latency-aware inference (LAI), and latency-aware
inference further improved with adaptive attention span and sparse execution (LAS+AAS+Sparse). Different latency targets
of 50ms (T=50), 75ms (T=75), and 100ms (T=100) are used for LAI executions. Results are compared with the baseline 12-layer
inference (Base) and the conventional early exit inference (EE).

considering the 50ms latency target. The computation of the next
sentence starts once the voltage transition is settled. During idle
times, EdgeBERT stays at standby 0.50V to save leakage energy.

8 HARDWARE EVALUATION
8.1 Design and Verification Methodology
The EdgeBERT accelerator is designed in synthesizable SystemC
with the aid of hardware components from the MatchLib [34] and
HLSLibs [27] open-source libraries. Verilog RTL is auto-generated
by the Catapult high-level synthesis (HLS) tool [1] using a commer-
cial 12nm process node. HLS constraints are uniformly set with the
goal to achieve maximum throughput on the pipelined design. Dur-
ing the bottom-up HLS phase, the decoder and auxiliary buffers are
mapped to synthesized memories from a foundry memory compiler,
while the rest of the registers are mapped to D-latches. The energy,
performance, and area results are reported on the post-HLS Verilog
netlists by the Catapult tool at the 0.8V/25c/typical corner. The
28nm ReRAM cells are characterized in NVSIM [18] and its read

latency, energy, and area are back-annotated into the accelerator
results after scaling to a 12nm F2 cell definition in order to match
the process node used in the rest of the system.

To quantify the benefits of non-volatility (Sec. 8.3), we quan-
tify the alternative cost of loading embeddings from off-chip using
DRAMsim3 [40] to extract cycle-accurate LPDDR4 DRAM energy
and latency metrics. GPU results are obtained from CUDA imple-
mentations on an Nvidia TX2 mobible GPU (mGPU), whose small
form-factor SoC targets embedded edge/IoT applications [2].
8.2 Performance, Energy and Area Analyses
8.2.1 Design Space Exploration via MAC scaling.
We start by measuring the energy-performance trade-offs of the
EdgeBERT accelerator by scaling its PU MAC vector size. Simulta-
neously, we further quantify the benefit of bitmask encoding and
the predicating logic of the adaptive attention span mechanism
by using the attained optimization results (i.e. embedding and en-
coder sparsity percentage, and attention span) reported in Table 3
in which the accuracy drop was at 1%-pt of the baseline. Adaptive

839

EdgeBERT: Sentence-Level Energy Optimizations for Latency-Aware Multi-Task NLP Inference MICRO ’21, October 18–22, 2021, Virtual Event, Greece

Blocks Area
(mm2)

Power
(mW)

PU
Datapaths 0.52 36.9

SFU
Datapaths 0.21 9.44

SRAM
Buffers 0.50 33.6

ReRAM
Buffers 0.15 3.48

ADPLL 0.01 2.46

Total 1.39 85.9

PU Decoder Buffers
SFU Auxiliary

Buffer

ADPLL+
LDO

Controller

SFU
Datapaths PU

Datapaths

PU Datapaths SFU Datapaths

MACs Bitmask
Encoding

Bitmask
Decoding

Softmax &
Attn. Masking Normalization Element-Wise

Addition
Early Exit

Assessment
Latency 90.7% 3.2% 3.2% 1.1% 1.2% 0.13% 0.40%
Energy 98.8% 0.42% 0.33% 0.22% 0.14% 0.003% 0.04%

(a)

(b)

Figure 10: (a) Breakdown of latency and energy consump-
tion in PU and SFU datapaths, and (b) 12nm physical layout,
and area andpower (@0.8V/1GHz) breakdownof the energy-
optimal EdgeBERT accelerator (MAC size=16).
adaptive span is also applied to the mGPU platform in order to
quantify and compare the extent of these benefits.

Fig. 8 shows that the per-sentence processing latency decreases
by roughly 3.5× as the vector size doubles. Across the four tasks, the
energy-optimal accelerator design is obtained with a MAC vector
size, n, of 16. This is because the increase in the datapath power
consumption with n = 32 starts to subdue throughput gains. The
predication/skipping mechanism of adaptive attention span reduces
the accelerator processing time and energy consumption by up to
1.2× and 1.1×, respectively. Compressed sparse execution in the PU
datapath amounts to an additional 1.4–1.7× energy savings with
QQP receiving the benefit the most. The EdgeBERT accelerator
starts to outperform the mGPU processing time with n = 16. This
energy-optimal design generates up 53× lower energy compared
to the mGPU when all the optimizations are factored in.

Fig. 10 breaks down the latency, energy, area and power contri-
butions inside the placed-and-routed, energy-optimal (n=16) Edge-
BERT accelerator system which occupies 1.4mm2 while consuming
an average power of 86mW.

8.2.2 DVFS-based Latency-Aware Inference.
Fig. 9 shows the DVFS-controlled supply voltage and clock fre-
quency, and the energy savings of the latency-aware inference
(LAI) on the energy-optimal accelerator design (i.e. with MAC vec-
tor size n = 16) using latency targets between 50ms and 100ms
(common latency thresholds for real-time human perception [57])).
The results show that EdgeBERT optimized LAI achieves up to
7×, and 2.5× per-inference energy savings compared to the con-
ventional inference (Base), and latency-unbounded early exit (EE)
approaches, respectively, as seen in the SST-2 case. As AAS further
cuts the number of computation cycles, we observe further relax-
ation of the supply voltage and clock frequency. At some latency
targets (e.g., 75ms and 100ms in QQP and SST-2), further energy
savings are not possible as V/F scaling bottoms out. To underscore
the different contributions to energy savings, at 75ms latency target
for example in the case of MNLI, early exit prediction, adaptive
attention span, DVFS, sparse execution, and eNVMs account for
21%, 12%, 23%, 39%, and 5%, respectively, of the total accelerator
energy reduction.

For stricter latency targets (e.g. < 20ms), the proposed DFVS-
based scheme can be used by scaling up to even higher MAC vector
sizes (i.e. n ≥ 32).

~66,000x ~50x

Figure 11: Costs of reading all embedding weights after sys-
tem power-on. Storing embeddings in ReRAMs gives Edge-
BERT significant energy and latency advantages compared
to the conventional approach requiring DRAM read fol-
lowed by SRAM write/read.
8.3 Benefits of NVM Embeddings Storage
BERT word embeddings are a natural fit for non-volatile storage,
given that in EdgeBERT, we freeze them during fine-tuning and
reuses them during inference By virtue of this scheme, we have
established a compact 1.73MB baseline wherein the bitmask of the
word embeddings is stored in a SLC ReRAM while the nonzero
parameters are stored in a 2-bit per cell (MLC2) ReRAM buffer.

Fig. 11 illustrates the immense gains of leveraging this eNVM
configuration during single-batch inference after SoC power-on.
In EdgeBERT, ALBERT embeddings would only need to be read
from the integrated ReRAM buffers due to being statically pre-
loaded. The conventional operation dictates reading the embedding
weights from off-chip DRAM, then writing them to dedicated on-
chip volatile SRAM memories so they can be reused for future
token identifications. The EdgeBERT approach enforces a latency
and energy advantage that is, respectively, 50× and 66,000× greater
than the overhead costs in the conventional operation. The non-
volatility of this embedded storage means that these benefits can
further scale with the frequency of power cycles.

9 RELATEDWORK
Over the last decade, there has been extensive research on the
design of high-performance and energy-efficient DNN hardware
accelerators [5, 6, 11, 12, 22, 24, 26, 31, 33, 35, 36, 41, 42, 45, 47,
53, 54, 60–62, 66, 67, 71, 82–84, 86]. As these accelerators are in-
creasingly deployed at all computing scales, there is additional
interest in the hardware community to automatically generate
designs [76, 77, 80, 81]. However, most of these works focus on
CNN and RNN [20] computations, and not as much scrutiny has
been given to accelerating Transformer-based networks with self-
attention mechanisms.

Recent work in accelerating Transformer-based NLP includes
A3 [23], which proposed a hardware architecture that reduces the
number of computations in attention mechanisms via approximate
and iterative candidate search. However, the A3 scheme fetches the
full and uncompressed data from DRAM before dynamically reduc-
ing computations in the hardware. In contrast, EdgeBERT learns the
optimal attention search radius during the finetuning process and
then leverages its very sparse mask to avoid unnecessary matrix
multiplications. Therefore, our approach substantially eliminates
DRAM accesses as the computation and memory optimizations are
pre-learned before hardware acceleration. GOBO [88] focuses on

840

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Tambe, et al.

GOBO
[88]

Optimus
[55]

A3

[23]
SpAtten

[79]
EdgeBERT
(This work)

Model
Compression

Pruning ✗ ✓ ✓ ✓ ✓
Quantization ✓ ✗ ✗ ✓ ✓

Knowledge distillation ✗ ✗ ✗ ✗ ✓

Computation
Optimizations

Optimal attention span is
computed during inference inference inference inference finetuning

Early exit assessment ✗ ✗ ✗ ✗ ✓
Compressed sparse execution ✗ ✓ ✗ ✓ ✓
eNVM storage for embeddings ✗ ✗ ✗ ✗ ✓

Figure 12: Comparison of EdgeBERT with prior work accel-
erating Transformer-based NLP models.
BERT quantization only via 3-bit clustering on the majority of BERT
weights while storing the outlier weights and activations in full
FP32 precision. Although this scheme significantly reduces DRAM
accesses, it requires a mixed-precision computational datapath and
a non-uniform memory storage. In contrast, EdgeBERT adopts uni-
form 8-bit data storage in SRAM and eNVMsmemories. Lu et al. [46]
proposes a dense systolic array accelerator for the Transformer’s
multi-head attention and feed-forward layers and optimizes Trans-
formers’ computations via matrix partitioning schemes. The Edge-
BERT accelerator executes compressed sparse inference for higher
energy efficiency. OPTIMUS [55] looks to holistically accelerate
Transformers with compressed sparse matrix multiplications and
by skipping redundant decoding computations. FlexASR [71] accel-
erates attention-based RNNs in a specialized attention datapath and
only saves energy by gating the MACwhen decoder RNN inputs are
null. SpAtten [79] accelerates Transformer-based models via pro-
gressive cascade token and attention head pruning. The importance
of each attention head is determined during the computation via a
top-k ranking system. In contrast, EdgeBERT opts to learn the im-
portant attention heads during the fine-tuning process by activating
adaptive attention spanning. The optimized and sparse attention
spans are then used by the EdgeBERT accelerator to predicate the
NLP computation.

Finally, all the aforementioned NLP accelerators stores the em-
beddingweights in traditional volatile SRAMmemories. By contrast,
this work recognizes that embedding weights do not change across
NLP tasks. Therefore, EdgeBERT statically stores the word embed-
dings in high density eNVMs, generating substantial energy and
latency benefits (Sec. 8.3). Fig. 12 qualitatively contrasts some of
the prior work with EdgeBERT.

10 CONCLUSION
As newer Transformer-based pre-trained models continue to gener-
ate impressive breakthroughs in language modeling, they character-
istically exhibit complexities that levy hefty latency, memory, and
energy taxes on resource-constrained edge platforms. EdgeBERT
provides an in-depth and principled latency-driven methodology to
alleviate these computational challenges in both the algorithm and
hardware architecture layers. EdgeBERT adopts first-layer early exit
prediction in order to perform dynamic voltage-frequency scaling
(DVFS), at a sentence granularity, for minimal energy consumption
while adhering to a prescribed target latency. Latency and memory
footprint overheads are further alleviated by employing a balanced
combination of adaptive attention span, selective network prun-
ing, floating-point quantization. We further exploit and optimize
the structure of eNVMs in order to store the shared multi-task pa-
rameters, granting EdgeBERT significant performance and energy

savings from system power-on. Sentence-level, latency-aware in-
ference on the EdgeBERT accelerator notably consumes 7× and
2.5× lower energy than the conventional full-model inference, and
the latency-unbounded early exit approach, respectively.

ACKNOWLEDGMENTS
This work was supported in part by the Center for Applications
Driving Architectures (ADA), one of six centers of JUMP, a Semi-
conductor Research Corporation (SRC) program co-sponsored
by DARPA; DARPA’s DSSoC program; NSF Awards 1704834 and
1718160; Intel Corp.; and Arm Inc.

A ARTIFACT APPENDIX
A.1 Abstract
Our artifact provides the software and hardware modelings behind
EdgeBERT. It includes the following:

• The Python and Pytorch scripts used for entropy prediction
and ALBERT finetuning including support for the various
latency and memory alleviating optimizations.

• The SystemC source codes of the hardware accelerator and
C++ testbenches.

A.2 Artifact check-list (meta-information)
• Run-time environment: Our evaluation scripts assume a Unix

environment. Our hardware evaluation workflow has been validated
with the following tool and package versions:
– catapult: 10.5a
– gcc: 4.9.3 with C++11
– boost: 1.55.0
– systemc: 2.3.1
Our software evaluation workflow has been validated with the fol-
lowing tool and package versions:
– Anaconda3: 5.0.1
– Cuda: 10.0.130
– Cudnn: 7.4.1.5
– Python: 3.7.10

• Metrics: SW: task accuracy, HW: simulated cycle counts, post-HLS
power and area.

• Experiments: We provide the scripts and procedures for running
the software and hardware experiments.

• How much disk space required (approximately)?: 50 GB.
• How much time is needed to prepare workflow (approxi-
mately)?: SW: 12-24 hours, HW: 0.5-1 hours.

• Howmuch time is needed to complete experiments (approx-
imately)?: SW: 12-24 hours, HW: 0.5-1 hours.

• Publicly available?: Yes
• Code licenses (if publicly available)?: Yes
• Archived (provide DOI)?: 10.5281/zenodo.5138730

A.3 Description and Installation
A.3.1 How to access. The artifact is available at the following links having
identical contents:

• https://doi.org/10.5281/zenodo.5138730
• https://github.com/harvard-acc/EdgeBERT

A.3.2 Hardware dependencies. In order to complete the software experi-
ments in a reasonable amount of time, GPU or TPU resources with at least
16GB of memory are necessary.

841

https://doi.org/10.5281/zenodo.5138730
https://github.com/harvard-acc/EdgeBERT

EdgeBERT: Sentence-Level Energy Optimizations for Latency-Aware Multi-Task NLP Inference MICRO ’21, October 18–22, 2021, Virtual Event, Greece

A.3.3 Data sets. We used the open-source NLP GLUE datasets (MNLI, QQP,
SST-2, QNLI) during finetuning. Additionally, we have also open-sourced the
custom entropy datasets used for training the MLP-based entropy predictor.

A.3.4 Models. The experiments are carried out specifically on the ALBERT
model. However, they could also be applied successfully to other pre-trained
BERT variants such as BERT-base.

A.4 Experiment workflow
A.4.1 Software Workflow. The INSTALL.md and README.md files in the sw
directory contains the steps required to set up the conda environment and
run the software evaluation workflow.

A.4.2 HardwareWorkflow. The README.md contains all the necessary steps
to compile and run the EdgeBERT accelerator. It is critical to have all the
hardware dependencies installed prior to simulating the accelerator.

A.5 Methodology
Submission, reviewing and badging methodology:

• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html
• https://www.acm.org/publications/policies/artifact-review-
badging

REFERENCES
[1] accessedOct 1, 2020. Catapult High-Level Synthesis. https://www.mentor.com/hls-

lp/catapult-high-level-synthesis
[2] accessed Oct 1, 2020. Jetson TX2Module. https://developer.nvidia.com/embedded/

jetson-tx2
[3] A. Agrawal, S. Lee, J. Silberman, M. Ziegler, M. Kang, S. Venkataramani, N. Cao, B.

Fleischer, M. Guillorn, M. Cohen, S. Mueller, J. Oh, M. Lutz, J. Jung, S. Koswatta,
C. Zhou, V. Zalani, J. Bonanno, R. Casatuta, C. Chen, J. Choi, H. Haynie, A.
Herbert, R. Jain, M. Kar, K. Kim, Y. Li, Z. Ren, S. Rider, M. Schaal, K. Schelm, M.
Scheuermann, X. Sun, H. Tran, N. Wang, W. Wang, X. Zhang, V. Shah, B. Curran,
V. Srinivasan, P. Lu, S. Shukla, L. Chang, and K. Gopalakrishnan. 2021. 9.1 A
7nm 4-Core AI chip with 25.6 TFLOPS hybrid FP8 training, 102.4 TOPS INT4
inference and workload-Aware throttling. In 2021 IEEE International Solid-State
Circuits Conference Digest of Technical Papers (ISSCC).

[4] T. Ajayi, S. Kamineni, Y. Cherivirala, M. Fayazi, K. Kwon, M. Saligane, S. Gupta, C.
Chen, D. Sylvester, D. Dreslinski, B. Calhoun, and D. Wentzloff. 2020. An Open-
source Framework for Autonomous SoC Design with Analog Block Generation.
In 020 IFIP/IEEE 28th International Conference on Very Large Scale Integration
(VLSI-SoC).

[5] Vahideh Akhlaghi, Amir Yazdanbakhsh, Kambiz Samadi, Rajesh K. Gupta, and
Hadi Esmaeilzadeh. 2018. SnaPEA: Predictive Early Activation for Reducing
Computation in Deep Convolutional Neural Networks. In Proceedings of the 45th
Annual International Symposium on Computer Architecture. 662–673.

[6] Jorge Albericio, Patrick Judd, Tayler Hetherington, Tor Aamodt, Natalie Enright
Jerger, and Andreas Moshovos. 2016. Cnvlutin: Ineffectual-Neuron-Free Deep
Neural Network Computing. In Proceedings of the 43rd International Symposium
on Computer Architecture.

[7] L. J. Ba et al. 2016. Layer Normalization. ArXiv abs/1607.06450 (2016).
[8] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural Machine

Translation by Jointly Learning to Align and Translate. In 3rd International
Conference on Learning Representations, ICLR 2015. http://arxiv.org/abs/1409.0473

[9] S. Bang, W. Lim, C. Augustine, A. Malavasi, M. Khellah, J. Tschanz, and V. De.
2020. 25.1 A Fully Synthesizable Distributed and Scalable All-Digital LDO in
10nm CMOS. In 2020 IEEE International Solid-State Circuits Conference Digest of
Technical Papers (ISSCC).

[10] M. Chang, J. Wu, T. Chien, Y. Liu, T. Yang, W. Shen, Y. King, C. Lin, K. Lin, Y. Chih,
S. Natarajan, and J. Chang. 2014. 19.4 embedded 1Mb ReRAM in 28nm CMOS
with 0.27-to-1V read using swing-sample-and-couple sense amplifier and self-
boost-write-termination scheme. In 2014 IEEE International Solid-State Circuits
Conference Digest of Technical Papers (ISSCC).

[11] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen,
and Olivier Temam. 2014. DianNao: A Small-footprint High-throughput Accel-
erator for Ubiquitous Machine-learning. In Proceedings of the 19th International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’14). ACM, New York, NY, USA, 269–284.

[12] Y. Chen, J. Emer, and V. Sze. 2016. Eyeriss: A Spatial Architecture for Energy-
Efficient Dataflow for Convolutional Neural Networks. In 2016 ACM/IEEE 43rd
Annual International Symposium on Computer Architecture (ISCA). 367–379.

[13] J. Choi, Z. Hakimi, P. W. Shin, J. Sampson, and V. Narayanan. 2019. Context-
Aware Convolutional Neural Network over Distributed System in Collaborative
Computing. In 2019 56th ACM/IEEE Design Automation Conference (DAC). 1–6.

[14] G. F. Close, U. Frey, J. Morrish, R. Jordan, S. C. Lewis, T. Maffitt, M. J. BrightSky,
C. Hagleitner, C. H. Lam, and E. Eleftheriou. 2013. A 256-Mcell Phase-Change
Memory Chip Operating at 2+ Bit/Cell. IEEE Transactions on Circuits and Systems
I: Regular Papers 60, 6 (2013), 1521–1533. https://doi.org/10.1109/TCSI.2012.
2220459

[15] Cong Xu, Dimin Niu, N. Muralimanohar, N. P. Jouppi, and Yuan Xie. 2013. Un-
derstanding the trade-offs in multi-level cell ReRAM memory design. In 2013
50th ACM/EDAC/IEEE Design Automation Conference (DAC). 1–6.

[16] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
CoRR abs/1810.04805 (2018). arXiv:1810.04805 http://arxiv.org/abs/1810.04805

[17] M. Donato, L. Pentecost, D. Brooks, and G. Wei. 2019. MEMTI: Optimizing On-
Chip Nonvolatile Storage for Visual Multitask Inference at the Edge. IEEE Micro
39, 6 (2019), 73–81. https://doi.org/10.1109/MM.2019.2944782

[18] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi. 2012. NVSim: A Circuit-Level Per-
formance, Energy, and Area Model for Emerging Nonvolatile Memory. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 31, 7
(2012), 994–1007. https://doi.org/10.1109/TCAD.2012.2185930

[19] Robert Eisele. 2016. The log-sum-exp trick in Machine Learning. https://www.
xarg.org/2016/06/the-log-sum-exp-trick-in-machine-learning/

[20] Igor Fedorov, Marko Stamenovic, Carl Jensen, Li-Chia Yang, Ari Mandell, Yiming
Gan, Matthew Mattina, and Paul N. Whatmough. 2020. TinyLSTMs: Efficient
Neural Speech Enhancement for Hearing Aids. In Proc. Interspeech 2020. 4054–
4058. https://doi.org/10.21437/Interspeech.2020-1864

[21] Prakhar Ganesh, Yao Chen, Xin Lou, Mohammad Haris Ali Khan, Y. Yang, D.
Chen, M. Winslett, Hassan Sajjad, and Preslav Nakov. 2020. Compressing Large-
Scale Transformer-Based Models: A Case Study on BERT. ArXiv abs/2002.11985
(2020).

[22] Mingyu Gao, Xuan Yang, Jing Pu, Mark Horowitz, and Christos Kozyrakis. 2019.
TANGRAM: Optimized Coarse-Grained Dataflow for Scalable NNAccelerators. In
Proceedings of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS ’19). Association for
Computing Machinery, New York, NY, USA, 807–820. https://doi.org/10.1145/
3297858.3304014

[23] Tae Jun Ham, S. J. Jung, Seonghak Kim, Young H. Oh, Yeonhong Park, Yongchan
Song, Junghun Park, Sang-Hee Lee, K. Park, J. Lee, and Deog-Kyoon Jeong. 2020.
A3 : Accelerating Attention Mechanisms in Neural Networks with Approximation.
2020 IEEE International Symposium on High Performance Computer Architecture
(HPCA) (2020), 328–341.

[24] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz,
and William J. Dally. 2016. EIE: Efficient Inference Engine on Compressed Deep
Neural Network. SIGARCH Comput. Archit. News 44, 3 (June 2016).

[25] Song Han, Huizi Mao, and William J. Dally. 2015. Deep Compression: Compress-
ing Deep Neural Network with Pruning, Trained Quantization and Huffman
Coding. CoRR abs/1510.00149 (2015).

[26] Kartik Hegde, Jiyong Yu, Rohit Agrawal, Mengjia Yan, Michael Pellauer, and
Christopher W. Fletcher. 2018. UCNN: Exploiting Computational Reuse in Deep
Neural Networks via Weight Repetition. In Proceedings of the 45th Annual Inter-
national Symposium on Computer Architecture. 674–687.

[27] HLSLibs. [n. d.]. Open-Source High-Level Synthesis IP Libraries. Technical Report.
https://github.com/hlslibs

[28] B. Huang, E. Fang, S. Hsueh, R. Huang, A. Lin, C. Chiang, Y. Lin, W. Hsieh, B.
Chen, Y. Zhuang, C. Wu, J. Chen, Y. Chen, C. Wan, E. Wang, A. Chiou, P. Kao, Y.
Tsai, H. Chen, and S. Hwang. 2021. 35.1 An octa-core 2.8/2GHz dual-gear sensor-
assisted high-speed and power-efficient CPU in 7nm FinFET 5G smartphone
SoC. In 2021 IEEE International Solid-State Circuits Conference Digest of Technical
Papers (ISSCC).

[29] Forrest N. Iandola, Albert Eaton Shaw, R. Krishna, and K. Keutzer. 2020. Squeeze-
BERT: What can computer vision teach NLP about efficient neural networks?
ArXiv abs/2006.11316 (2020).

[30] Sergey Ioffe and Christian Szegedy. 2015. Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. CoRR abs/1502.03167
(2015). arXiv:1502.03167 http://arxiv.org/abs/1502.03167

[31] Animesh Jain, Amar Phanishayee, Jason Mars, Lingjia Tang, and Gennady Pekhi-
menko. 2018. Gist: Efficient Data Encoding for Deep Neural Network Training. In
Proceedings of the 45th Annual International Symposium on Computer Architecture
(ISCA ’18). 776–789.

[32] Jeff Johnson. 2018. Rethinking floating point for deep learning. CoRR
abs/1811.01721 (2018). arXiv:1811.01721 http://arxiv.org/abs/1811.01721

[33] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S.
Bhatia, N. Boden, A. Borchers, R. Boyle, P. Cantin, C. Chao, C. Clark, J. Coriell, M.
Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gottipati, W. Gulland,
R. Hagmann, C. R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey,
A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy,
J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G. MacKean, A.

842

http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
https://www.mentor.com/hls-lp/catapult-high-level-synthesis
https://www.mentor.com/hls-lp/catapult-high-level-synthesis
https://developer.nvidia.com/embedded/jetson-tx2
https://developer.nvidia.com/embedded/jetson-tx2
http://arxiv.org/abs/1409.0473
https://doi.org/10.1109/TCSI.2012.2220459
https://doi.org/10.1109/TCSI.2012.2220459
https://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.1109/MM.2019.2944782
https://doi.org/10.1109/TCAD.2012.2185930
https://www.xarg.org/2016/06/the-log-sum-exp-trick-in-machine-learning/
https://www.xarg.org/2016/06/the-log-sum-exp-trick-in-machine-learning/
https://doi.org/10.21437/Interspeech.2020-1864
https://doi.org/10.1145/3297858.3304014
https://doi.org/10.1145/3297858.3304014
https://github.com/hlslibs
https://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1811.01721
http://arxiv.org/abs/1811.01721

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Tambe, et al.

Maggiore, M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix,
T. Norrie, M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E.
Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing,
M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W.
Wang, E. Wilcox, and D. H. Yoon. 2017. In-datacenter performance analysis of a
tensor processing unit. In 2017 ACM/IEEE 44th Annual International Symposium
on Computer Architecture (ISCA). 1–12. https://doi.org/10.1145/3079856.3080246

[34] Brucek Khailany, Evgeni Khmer, Rangharajan Venkatesan, Jason Clemons, Joel S.
Emer, Matthew Fojtik, Alicia Klinefelter, Michael Pellauer, Nathaniel Pinck-
ney, Yakun Sophia Shao, Shreesha Srinath, Christopher Torng, Sam (Likun)
Xi, Yanqing Zhang, and Brian Zimmer. 2018. A Modular Digital VLSI Flow for
High-productivity SoC Design. In Proceedings of the 55th Annual Design Au-
tomation Conference (DAC ’18). ACM, New York, NY, USA, Article 72, 6 pages.
https://doi.org/10.1145/3195970.3199846

[35] Glenn G. Ko, Yuji Chai, Marco Donato, Paul N. Whatmough, Thierry Tambe,
Rob A. Rutenbar, David Brooks, and Gu-Yeon Wei. 2020. A 3mm²
Programmable Bayesian Inference Accelerator for Unsupervised Machine Per-
ception using Parallel Gibbs Sampling in 16nm. In 2020 IEEE Symposium on VLSI
Circuits. 1–2. https://doi.org/10.1109/VLSICircuits18222.2020.9162784

[36] Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna. 2018. MAERI: Enabling
Flexible Dataflow Mapping over DNN Accelerators via Reconfigurable Inter-
connects. SIGPLAN Not. 53, 2 (March 2018), 461–475. https://doi.org/10.1145/
3296957.3173176

[37] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush
Sharma, and Radu Soricut. 2020. ALBERT: A Lite BERT for Self-supervised
Learning of Language Representations. ArXiv abs/1909.11942 (2020).

[38] Sae Kyu Lee, Paul N. Whatmough, David Brooks, and Gu-Yeon Wei. 2019. A
16-nm Always-On DNN Processor With Adaptive Clocking and Multi-Cycle
Banked SRAMs. IEEE Journal of Solid-State Circuits 54, 7 (2019), 1982–1992.
https://doi.org/10.1109/JSSC.2019.2913098

[39] Haitong Li, Mudit Bhargav, Paul N. Whatmough, and H.-S. Philip Wong. 2019.
On-Chip Memory Technology Design Space Explorations for Mobile Deep Neural
Network Accelerators. In 2019 56th ACM/IEEE Design Automation Conference
(DAC). 1–6.

[40] S. Li, Z. Yang, D. Reddy, A. Srivastava, and B. Jacob. 2020. DRAMsim3: A Cycle-
Accurate, Thermal-Capable DRAM Simulator. IEEE Computer Architecture Letters
19, 2 (2020), 106–109. https://doi.org/10.1109/LCA.2020.2973991

[41] Daofu Liu, Tianshi Chen, Shaoli Liu, Jinhong Zhou, Shengyuan Zhou, Olivier
Teman, Xiaobing Feng, Xuehai Zhou, and Yunji Chen. 2015. PuDianNao: A
Polyvalent Machine Learning Accelerator. SIGPLAN Not. 50, 4 (March 2015),
369–381. https://doi.org/10.1145/2775054.2694358

[42] Shaoli Liu, Zidong Du, Jinhua Tao, Dong Han, Tao Luo, Yuan Xie, Yunji Chen,
and Tianshi Chen. 2016. Cambricon: An Instruction Set Architecture for Neu-
ral Networks. In Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA ’16). 393–405.

[43] T. Liu, T. H. Yan, R. Scheuerlein, Y. Chen, J. K. Lee, G. Balakrishnan, G. Yee,
H. Zhang, A. Yap, J. Ouyang, T. Sasaki, S. Addepalli, A. Al-Shamma, C. Chen,
M. Gupta, G. Hilton, S. Joshi, A. Kathuria, V. Lai, D. Masiwal, M. Matsumoto,
A. Nigam, A. Pai, J. Pakhale, C. H. Siau, X. Wu, R. Yin, L. Peng, J. Y. Kang, S.
Huynh, H. Wang, N. Nagel, Y. Tanaka, M. Higashitani, T. Minvielle, C. Gorla, T.
Tsukamoto, T. Yamaguchi, M. Okajima, T. Okamura, S. Takase, T. Hara, H. Inoue,
L. Fasoli, M. Mofidi, R. Shrivastava, and K. Quader. 2013. A 130.7mm2 2-layer
32Gb ReRAM memory device in 24nm technology. In 2013 IEEE International
Solid-State Circuits Conference Digest of Technical Papers.

[44] Y. Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov. 2019. RoBERTa: A Robustly
Optimized BERT Pretraining Approach. ArXiv abs/1907.11692 (2019).

[45] Zhi-Gang Liu, Paul N. Whatmough, and Matthew Mattina. 2020. Systolic
Tensor Array: An Efficient Structured-Sparse GEMM Accelerator for Mobile
CNN Inference. IEEE Computer Architecture Letters 19, 1 (2020), 34–37. https:
//doi.org/10.1109/LCA.2020.2979965

[46] Siyuan Lu, Meiqi Wang, S. Liang, J. Lin, and Z. Wang. 2020. Hardware Accelerator
for Multi-Head Attention and Position-Wise Feed-Forward in the Transformer.
ArXiv abs/2009.08605 (2020).

[47] D. Mahajan, J. Park, E. Amaro, H. Sharma, A. Yazdanbakhsh, J. K. Kim, and H.
Esmaeilzadeh. 2016. TABLA: A unified template-based framework for accel-
erating statistical machine learning. In 2016 IEEE International Symposium on
High Performance Computer Architecture (HPCA). 14–26. https://doi.org/10.1109/
HPCA.2016.7446050

[48] James McCaffrey. 2016. The Max Trick when Computing Softmax.
https://jamesmccaffrey.wordpress.com/2016/03/04/the-max-trick-when-
computing-softmax/

[49] J. Scott McCarley. 2019. Pruning a BERT-based Question Answering Model. ArXiv
abs/1910.06360 (2019).

[50] P. Meinerzhagen, C. Tokunaga, A. Malavasi, V. Vaidya, A. Mendon, D. Math-
aikutty, J. Kulkarni, C. Augustine, M. Cho, S. Kim, G. Matthew, R. Jain, J. Ryan, C.
Peng, S. Paul, S. Vangal, B. Esparza, L. Cuellar, M. Woodman, B. Iyer, S. Maiyuran,

G. Chinya, C. Zou, Y. Liao, K. Ravichandran, H. Wang, M. Khellah, J. Tschanz, and
V. De. 2018. 2.3 An energy-efficient graphics processor featuring fine-grain DVFS
with integrated voltage regulators, execution-unit turbo, and retentive sleep in
14nm tri-gate CMOS. In 2018 IEEE International Solid-State Circuits Conference
Digest of Technical Papers (ISSCC).

[51] Paul Michel, Omer Levy, and Graham Neubig. 2019. Are Sixteen Heads Really
Better than One? ArXiv abs/1905.10650 (2019).

[52] Pandu Nayak. 2019. Understanding searches better than ever before. Technical
Report. https://blog.google/products/search/search-language-understanding-
bert/

[53] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rang-
harajan Venkatesan, Brucek Khailany, Joel Emer, Stephen W. Keckler, and
William J. Dally. 2017. SCNN: An Accelerator for Compressed-Sparse Con-
volutional Neural Networks. In Proceedings of the 44th Annual International
Symposium on Computer Architecture (ISCA ’17). Association for Computing
Machinery, New York, NY, USA, 27–40.

[54] Eunhyeok Park, Dongyoung Kim, and Sungjoo Yoo. 2018. Energy-Efficient Neural
Network Accelerator Based on Outlier-Aware Low-Precision Computation. In
Proceedings of the 45th Annual International Symposium on Computer Architecture.
688–698.

[55] Junki Park, Hyunsung Yoon, Daehyun Ahn, Jungwook Choi, and Jae-Joon Kim.
2020. OPTIMUS: OPTImized matrix MUltiplication Structure for Transformer
neural network accelerator. In Proceedings of Machine Learning and Systems,
I. Dhillon, D. Papailiopoulos, and V. Sze (Eds.). Vol. 2. 363–378.

[56] Lillian Pentecost, Marco Donato, Brandon Reagen, Udit Gupta, Siming Ma, Gu-
Yeon Wei, and David Brooks. 2019. MaxNVM: Maximizing DNN Storage Density
and Inference Efficiency with Sparse Encoding and Error Mitigation. In Proceed-
ings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO ’52).

[57] PubNub. 2015. How Fast is Real-time? Human Perception and Technol-
ogy. https://www.pubnub.com/blog/how-fast-is-realtime-human-perception-
and-technology/

[58] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016.
SQuAD: 100, 000+ Questions for Machine Comprehension of Text. ArXiv
abs/1606.05250 (2016).

[59] B. Reagen, U. Gupta, L. Pentecost, P. Whatmough, S. K. Lee, N. Mulholland, D.
Brooks, andG.Wei. 2018. Ares: A framework for quantifying the resilience of deep
neural networks. In 2018 55th ACM/ESDA/IEEE Design Automation Conference
(DAC). 1–6. https://doi.org/10.1109/DAC.2018.8465834

[60] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee, J. M. Hernández-
Lobato, G. Wei, and D. Brooks. 2016. Minerva: Enabling Low-Power, Highly-
Accurate Deep Neural Network Accelerators. In 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA). 267–278. https://doi.
org/10.1109/ISCA.2016.32

[61] Marc Riera, Jose-Maria Arnau, and Antonio González. 2018. Computation Reuse
in DNNs by Exploiting Input Similarity. In Proceedings of the 45th Annual Inter-
national Symposium on Computer Architecture. 57–68.

[62] Ananda Samajdar, Jan Moritz Joseph, Yuhao Zhu, Paul Whatmough, Matthew
Mattina, and Tushar Krishna. 2020. A Systematic Methodology for Characterizing
Scalability of DNN Accelerators using SCALE-Sim. In 2020 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS). 58–68.
https://doi.org/10.1109/ISPASS48437.2020.00016

[63] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. Dis-
tilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. ArXiv
abs/1910.01108 (2019).

[64] Victor Sanh, Thomas Wolf, and Alexander M. Rush. 2020. Movement Pruning:
Adaptive Sparsity by Fine-Tuning. In 34th Conference on Neural Information
Processing Systems (NeurIPS). http://arxiv.org/abs/2005.07683

[65] Roy Schwartz, Gabi Stanovsky, Swabha Swayamdipta, Jesse Dodge, and Noah A.
Smith. 2020. The Right Tool for the Job: Matching Model and Instance Complexi-
ties. In ACL.

[66] Yakun Sophia Shao, Jason Clemons, Rangharajan Venkatesan, Brian Zimmer,
Matthew Fojtik, Nan Jiang, Ben Keller, Alicia Klinefelter, Nathaniel Pinckney,
Priyanka Raina, Stephen G. Tell, Yanqing Zhang, William J. Dally, Joel Emer,
C. Thomas Gray, Brucek Khailany, and Stephen W. Keckler. 2019. Simba: Scal-
ing Deep-Learning Inference with Multi-Chip-Module-Based Architecture. In
Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO ’52). Association for Computing Machinery, New York, NY,
USA, 14–27. https://doi.org/10.1145/3352460.3358302

[67] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao, A. Mishra, and H.
Esmaeilzadeh. 2016. From high-level deep neural models to FPGAs. In 2016 49th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). 1–12.
https://doi.org/10.1109/MICRO.2016.7783720

[68] Sheng Shen, Zhen Dong, J. Ye, L. Ma, Zhewei Yao, A. Gholami, M. Mahoney, and
K. Keutzer. 2020. Q-BERT: Hessian Based Ultra Low Precision Quantization of
BERT. In AAAI.

[69] Sainbayar Sukhbaatar, E. Grave, P. Bojanowski, and Armand Joulin. 2019. Adap-
tive Attention Span in Transformers. In ACL.

843

https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1145/3195970.3199846
https://doi.org/10.1109/VLSICircuits18222.2020.9162784
https://doi.org/10.1145/3296957.3173176
https://doi.org/10.1145/3296957.3173176
https://doi.org/10.1109/JSSC.2019.2913098
https://doi.org/10.1109/LCA.2020.2973991
https://doi.org/10.1145/2775054.2694358
https://doi.org/10.1109/LCA.2020.2979965
https://doi.org/10.1109/LCA.2020.2979965
https://doi.org/10.1109/HPCA.2016.7446050
https://doi.org/10.1109/HPCA.2016.7446050
https://jamesmccaffrey.wordpress.com/2016/03/04/the-max-trick-when-computing-softmax/
https://jamesmccaffrey.wordpress.com/2016/03/04/the-max-trick-when-computing-softmax/
https://blog.google/products/search/search-language-understanding-bert/
https://blog.google/products/search/search-language-understanding-bert/
https://www.pubnub.com/blog/how-fast-is-realtime-human-perception-and-technology/
https://www.pubnub.com/blog/how-fast-is-realtime-human-perception-and-technology/
https://doi.org/10.1109/DAC.2018.8465834
https://doi.org/10.1109/ISCA.2016.32
https://doi.org/10.1109/ISCA.2016.32
https://doi.org/10.1109/ISPASS48437.2020.00016
http://arxiv.org/abs/2005.07683
https://doi.org/10.1145/3352460.3358302
https://doi.org/10.1109/MICRO.2016.7783720

EdgeBERT: Sentence-Level Energy Optimizations for Latency-Aware Multi-Task NLP Inference MICRO ’21, October 18–22, 2021, Virtual Event, Greece

[70] Zhiqing Sun, H. Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
2020. MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices.
In ACL.

[71] Thierry Tambe, En-Yu Yang, Glenn G. Ko, Yuji Chai, Coleman Hooper, Marco
Donato, Paul N. Whatmough, Alexander M. Rush, David Brooks, and Gu-Yeon
Wei. 2021. 9.8 A 25mm2 SoC for IoT Devices with 18ms Noise-Robust Speech-to-
Text Latency via Bayesian Speech Denoising and Attention-Based Sequence-to-
Sequence DNN Speech Recognition in 16nm FinFET. In 2021 IEEE International
Solid- State Circuits Conference (ISSCC), Vol. 64. 158–160. https://doi.org/10.1109/
ISSCC42613.2021.9366062

[72] Thierry Tambe, En-Yu Yang, Zishen Wan, Y. Deng, V. Reddi, Alexander M. Rush,
D. Brooks, and Gu-Yeon Wei. 2019. AdaptivFloat: A Floating-point based Data
Type for Resilient Deep Learning Inference. ArXiv abs/1909.13271 (2019).

[73] S. Teerapittayanon, B. McDanel, and H. T. Kung. 2016. BranchyNet: Fast inference
via early exiting from deep neural networks. In 2016 23rd International Conference
on Pattern Recognition (ICPR). 2464–2469. https://doi.org/10.1109/ICPR.2016.
7900006

[74] Z. Toprak-Deniz, M. Sperling, J. Bulzacchelli, G. Still, R. Kruse, S. Kim, D. Boer-
stler, T. Gloekler, R. Robertazzi, K. Stawiasz, T. Diemoz, G. English, D. Hui, P.
Muench, and J. Friedrich. 2014. 5.2 Distributed system of digitally controlled
microregulators enabling per-core dvfs for the Power8 tm microprocessor. In
2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers
(ISSCC).

[75] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. CoRR abs/1706.03762 (2017). arXiv:1706.03762 http://arxiv.org/abs/
1706.03762

[76] Swagath Venkataramani, Ashish Ranjan, Subarno Banerjee, Dipankar Das,
Sasikanth Avancha, Ashok Jagannathan, Ajaya Durg, Dheemanth Nagaraj, Bharat
Kaul, Pradeep Dubey, and Anand Raghunathan. 2017. ScaleDeep: A Scalable
Compute Architecture for Learning and Evaluating Deep Networks. SIGARCH
Comput. Archit. News (2017).

[77] B. Venkatesan et al. 2019. MAGNet : A Modular Accelerator Generator for Neural
Networks. In ICCAD.

[78] AlexWang, Amanpreet Singh, JulianMichael, Felix Hill, Omer Levy, and Samuel R.
Bowman. 2018. GLUE: A Multi-Task Benchmark and Analysis Platform for
Natural Language Understanding. CoRR abs/1804.07461 (2018). arXiv:1804.07461
http://arxiv.org/abs/1804.07461

[79] HanruiWang, Zhekai Zhang, and SongHan. 2021. SpAtten: Efficient Sparse Atten-
tion Architecture with Cascade Token and Head Pruning. 2021 IEEE International

Symposium on High Performance Computer Architecture (HPCA) (2021).
[80] Jian Weng, Sihao Liu, Vidushi Dadu, Zhengrong Wang, Preyas Shah, and Tony

Nowatzki. 2020. DSAGEN: Synthesizing Programmable Spatial Accelerators. In
Proceedings of the ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA ’20).

[81] Paul N. Whatmough, Marco Donato, Glenn G. Ko, Sae Kyu Lee, David Brooks,
and Gu-Yeon Wei. 2020. CHIPKIT: An Agile, Reusable Open-Source Framework
for Rapid Test Chip Development. IEEE Micro 40, 4 (2020), 32–40. https://doi.
org/10.1109/MM.2020.2995809

[82] Paul N. Whatmough, Sae Kyu Lee, David Brooks, and Gu-Yeon Wei. 2018. DNN
Engine: A 28-nm Timing-Error Tolerant Sparse Deep Neural Network Processor
for IoT Applications. IEEE Journal of Solid-State Circuits 53, 9 (2018), 2722–2731.
https://doi.org/10.1109/JSSC.2018.2841824

[83] Paul N. Whatmough, Sae Kyu Lee, Marco Donato, Hsea-Ching Hsueh, Sam Xi,
Udit Gupta, Lillian Pentecost, Glenn G. Ko, David Brooks, and Gu-Yeon Wei. 2019.
A 16nm 25mm2 SoC with a 54.5x Flexibility-Efficiency Range from Dual-Core
Arm Cortex-A53 to eFPGA and Cache-Coherent Accelerators. In 2019 Symposium
on VLSI Circuits. C34–C35. https://doi.org/10.23919/VLSIC.2019.8778002

[84] Paul N. Whatmough, Chuteng Zhou, Patrick Hansen, Shreyas Kolala Venkatara-
manaiah, Jae sun Seo, and Matthew Mattina. 2019. FixyNN: Efficient Hardware
for Mobile Computer Vision via Transfer Learning. In Proceedings of the 2nd
SysML Conference, Palo Alto, CA, USA.

[85] ThomasWolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
AnthonyMoi, Pierric Cistac, Tim Rault, R’emi Louf, Morgan Funtowicz, and Jamie
Brew. 2019. HuggingFace’s Transformers: State-of-the-art Natural Language
Processing. ArXiv abs/1910.03771 (2019).

[86] Sam (Likun) Xi, Yuan Yao, Kshitij Bhardwaj, Paul Whatmough, Gu-Yeon Wei, and
David Brooks. 2020. SMAUG: End-to-End Full-Stack Simulation Infrastructure
for Deep Learning Workloads. ACM Trans. Archit. Code Optim. 17, 4, Article 39
(Nov. 2020), 26 pages. https://doi.org/10.1145/3424669

[87] J. Xin, Raphael Tang, J. Lee, Y. Yu, and Jimmy Lin. 2020. DeeBERT: Dynamic
Early Exiting for Accelerating BERT Inference. ArXiv abs/2004.12993 (2020).

[88] Ali Hadi Zadeh and A. Moshovos. 2020. GOBO: Quantizing Attention-Based
NLP Models for Low Latency and Energy Efficient Inference. In 53rd IEEE/ACM
International Symposium on Microarchitecture (MICRO).

[89] Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe Wasserblat. 2019. Q8BERT:
Quantized 8Bit BERT. In 33rd Conference on Neural Information Processing Systems
(NeurIPS).

[90] Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian McAuley, Ke Xu, and Furu Wei.
2020. BERT Loses Patience: Fast and Robust Inference with Early Exit. ArXiv
abs/2006.04152 (2020).

844

https://doi.org/10.1109/ISSCC42613.2021.9366062
https://doi.org/10.1109/ISSCC42613.2021.9366062
https://doi.org/10.1109/ICPR.2016.7900006
https://doi.org/10.1109/ICPR.2016.7900006
https://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1804.07461
http://arxiv.org/abs/1804.07461
https://doi.org/10.1109/MM.2020.2995809
https://doi.org/10.1109/MM.2020.2995809
https://doi.org/10.1109/JSSC.2018.2841824
https://doi.org/10.23919/VLSIC.2019.8778002
https://doi.org/10.1145/3424669

	Abstract
	1 Introduction
	2 Background
	2.1 Benchmarks
	2.2 Variations of BERT

	3 Alleviating Transformer memory and computation costs
	3.1 Entropy-based Early Exit
	3.2 Adaptive Attention Span
	3.3 Network Pruning
	3.4 Floating-Point Quantization

	4 Non-Volatile Memory Storage of Shared Parameters
	4.1 eNVM Modeling Methodology
	4.2 Optimal eNVM Configuration

	5 EdgeBERT's Latency-Aware Inference
	5.1 Methodology
	5.2 On-chip DVFS system

	6 Algorithmic Synergy
	6.1 Training and Evaluation Procedure
	6.2 Impact on Model Accuracy, Computation, and Storage

	7 The EDGEBERT Hardware Accelerator System
	7.1 Required Computations in ALBERT
	7.2 The EdgeBERT Accelerator System
	7.3 Processing Unit
	7.4 Special Function Unit

	8 Hardware Evaluation
	8.1 Design and Verification Methodology
	8.2 Performance, Energy and Area Analyses
	8.3 Benefits of NVM Embeddings Storage

	9 Related Work
	10 Conclusion
	Acknowledgments
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description and Installation
	A.4 Experiment workflow
	A.5 Methodology

	References

