EdgeBERT: Sentence-Level Energy Optimizations for Latency-Aware Multi-Task NLP Inference

<u>Thierry Tambe</u>¹, Coleman Hooper¹, Lillian Pentecost¹, Tianyu Jia¹, En-Yu Yang¹, Marco Donato², Victor Sanh³, Paul Whatmough^{4,1}, Alexander M. Rush^{5,3}, David Brooks¹, Gu-Yeon Wei¹

¹Harvard University, ²Tufts University, ³Hugging Face, ⁴Arm Research, ⁵Cornell University

54th IEEE/ACM International Symposium on Microarchitecture (MICRO 2021)

Harvard John A. Paulson School of Engineering and Applied Sciences

Deep learning based NLP is applied widely

Language Modeling & Understanding

Chat Bots

Search Engines

Image references https://sitechecker.pro/search-engines/ https://towardsdatascience.com/automatic-question-answering-ac7593432842 2 https://usersnap.com/blog/design-language-switch/

Deep learning based NLP is applied widely

Language Modeling & Understanding

Chat Bots

Search Engines

Understanding searches better than ever before

Oct 25, 2019 · 5 min read https://blog.google/products/search/search-language-understanding-bert/

Bing delivers its largest improvement in search experience using Azure GPUs

Posted on November 18, 2019

https://azure.microsoft.com/en-us/blog/bing-delivers-its-largest-improvement-in-search-experience-using-azure-gpus/

Image references https://sitechecker.pro/search-engines/ https://towardsdatascience.com/automatic-question-answering-ac7593432842 https://usersnap.com/blog/design-language-switch/

Transformers are behind NLP success

Newer Al models are increasingly Transformer-based

NLP growing overhead

NLP growing overhead

7

NLP growing overhead

- Need for a 2-dimensional compression along the memory and computations axes for energy-efficient inference
- > End of Moore's law requires software-hardware specialization

What is EdgeBERT?

EdgeBERT is a <u>cross-stack</u> (algorithm, architecture, solid-state) set of optimizations for <u>minimizing</u> the energy consumption of <u>multi-task NLP</u> inference at a <u>sentence granularity</u> under the <u>constraint</u> of an application <u>end-to-end latency target</u>.

Abstracting Energy Consumption

Energy $\propto \alpha C V_{DD}^2 N_{cycles}$

- α switching activity factor
- *C* wire and device capacitance
- V_{DD}^2 supply voltage
- *N_{cycles}* # of inference clock cycles

$$Energy \propto \alpha \ C \ V_{DD}^2 \ N_{cycles}$$

Latency-aware dynamic voltage frequency scaling enforces a quadratic reduction in the accelerator energy consumption

Entropy-based early exit and adaptive attention span reduce the required number of FLOPs

 eNVMs for NLP word embedding storage ultimately reduce onchip capacitance and memory read cycles

Sparse computations in the EdgeBERT HW accelerator considerably lowers energy consumption via MAC gating and logic skipping

Energy Savings Contributions in 12nm Accelerator Adaptation

Energy Savings Contributions in 12nm Accelerator Adaptation

Energy Savings Contributions in 12nm Accelerator Adaptation

Outline

Motivation

- EdgeBERT Optimizations
- Synergistic Evaluation
- Hardware Architecture
- Hardware Evaluation
- Conclusion

Outline

Motivation

- EdgeBERT Optimizations
 - Entropy-based DVFS for Latency-Bounded NLP Inference
 - Adaptive Attention Span
 - Embedding Storage in eNVMs
- Synergistic Evaluation
- Hardware Architecture
- Hardware Evaluation
- Conclusion

Conventional BERT inference

Computation goes through all 12 Transformer layers

BERT inference with early exit

> Inference exits early if the entropy is smaller than a user-given threshold

Early exit achieves significant latency savings

On the SST-2 task, close to 80% of BERT computations can be saved while maintaining 95% of the original accuracy.

Proposed latency-aware inference

DVFS uses the predicted early exit layer to lower the energy consumption during a sentence inference

Proposed latency-aware inference

> Early exit predictor is a 5-layer neural network perceptron

Proposed latency-aware inference

Accounts for up to 45% of the total accelerator energy reduction

Outline

Motivation

- EdgeBERT Optimizations
 - Entropy-based DVFS for Latency-Bounded NLP Inference
 - Adaptive Attention Span
 - Embedding Storage in eNVMs
- Synergistic Evaluation
- Hardware Architecture
- Hardware Evaluation
- Conclusion

Does BERT really need 12 attention heads?

Prior work have shown that there is a large amount of redundancy in attention heads in BERT and other Transformer-based models

EdgeBERT optimizes the attention span of each head during finetuning

Many attention heads can be turned off

Many attention heads can be turned off

Finetuning results show that up to half of ALBERT attention heads can be completed turned off prior to inference!

HW Implications

All the computations inside an attention head can be effectively skipped in case its associated attention span mask is null!

Many attention heads can be turned off

Adaptive attention span accounts for up to 12% of the total accelerator energy reduction

Outline

Motivation

- EdgeBERT Optimizations
 - Entropy-based DVFS for Latency-Bounded NLP Inference
 - Adaptive Attention Span
 - Embedding Storage in eNVMs
- Synergistic Evaluation
- Hardware Architecture
- Hardware Evaluation
- Conclusion

BERT word embeddings are appealing for storage in non-volatile memories

BERT word embeddings are appealing for storage in non-volatile memories

BERT word embeddings become read-only, therefore are a good match for NVM storage

BERT word embeddings are appealing for storage in non-volatile memories

> NVM provides benefit during intermittent operation

Obviates need to reload word embeddings from off-chip DRAM

Viability of Multi-Level Cell ReRAM for Word Embedding Storage

	Single-Level Cell		2-bits Per Cell ReRAM		3-bits Per Cell ReRAM	
	MEAN MIN		MEAN	MIN	MEAN	MIN
MNLI	85.44	85.44	85.44	85.44	85.42	85.25
QQP	90.77	90.77	90.77	90.77	90.75	90.61
SST-2	92.32	92.32	92.32	92.32	91.86	90.83
QNLI	89.53	89.53	89.53	89.53	88.32	53.43

Viability of Multi-Level Cell ReRAM for Word Embedding Storage

	Single-Level Cell		2-bits Per Cell ReRAM		3-bits Per Cell ReRAM	
No. In the second building	MEAN MIN		MEAN	MIN	MEAN	MIN
MNLI	85.44	85.44	85.44	85.44	85.42	85.25
QQP	90.77	90.77	90.77	90.77	90.75	90.61
SST-2	92.32	92.32	92.32	92.32	91.86	90.83
QNLI	89.53	89.53	89.53	89.53	88.32	53.43

> 3-bits per Cell ReRAM shows vulnerability

Viability of Multi-Level Cell ReRAM for Word Embedding Storage

	Single-Level Cell		2-bits Per Cell ReRAM		3-bits Per Cell ReRAM	
No. In the former function	MEAN MIN		MEAN	MIN	MEAN	MIN
MNLI	85.44	85.44	85.44	85.44	85.42	85.25
QQP	90.77	90.77	90.77	90.77	90.75	90.61
SST-2	92.32	92.32	92.32	92.32	91.86	90.83
QNLI	89.53	89.53	89.53	89.53	88.32	53.43

The EdgeBERT accelerator system leverages MLC2 ReRAMs for word embedding storage

Outline

- Motivation
- EdgeBERT Optimizations
- Synergistic Evaluation
- Hardware Architecture
- Hardware Evaluation
- Conclusion

Summary of Optimizations

Cross-stack (algorithm, architecture, solid-state) optimizations for multi-task NLP inference

Training and Evaluation Procedure

Training and Evaluation Procedure

Training and Evaluation Procedure

44

<u>ج</u>

<

<

Performance and Accuracy Implications

EdgeBERT latency-aware inference provides slightly higher or comparable average EE layer for the same accuracy threshold as the conventional EE approach

Reasonably Compact NVM Capacity

	Embedding Sparsity (%)	Embedding Sparsity (%)	Avg. Attn. Span	
MNLI	60	50	12.7	
QQP	60	80	11.3	
SST-2	60	50	18.4	
QNLI	60	60	21.5	

> 40% density in the embedding layer across all tasks, i.e. ~2MB can be provisioned for on-chip ReRAM storage

Ultra Low Attention Span

	Embedding Sparsity (%)	Embedding Sparsity (%)	Avg. Attn. Span
MNLI	60	50	12.7
QQP	60	80	11.3
SST-2	60	50	18.4
QNLI	60	60	21.5
L	1	I	4

> An average attention span less than 22

Outline

- Motivation
- EdgeBERT Optimizations
- Synergistic Evaluation
- Hardware Architecture
- Hardware Evaluation
- Conclusion

EdgeBERT Processing Unit (PU)

> Bit-mask decoder for decompressing non-zero matrices

- I6 KB scratchpad containing binary masks for activations and weights
- 128 KB scratchpad containing non-zero activations and weights

EdgeBERT Processing Unit (PU)

- Datapath takes two n*n matrices and computes n*n*n MAC operations in n clock cycles
 - 8-bit floating-point MAC
 - skips MAC computations on zero operands

EdgeBERT Processing Unit (PU)

Bit-mask encoder for compressing back sparse matrices

EdgeBERT Special Function Unit (SFU)

> The special function unit (SFU) contains specialized datapaths for:

- Early exit assessment, Layer Normalization, Element-wise Addition, DVFS control
- SoftMax and attention masking -- only activated if attention span is not null
- > 32KB auxiliary buffer stores metadata

Integrated LDO and ADPLL for DVFS

DVFS controller writes to LDO and ADPLL registers to generate energy-optimal VDD and CLK

On-Chip 2MB ReRAM Buffer

2MB of on-chip MLC2 ReRAM to store the shared multi-task word embeddings

Computing the Attention SoftMax

$$sofmax(x_i) = \frac{\exp\{x_i\}}{\sum_{j=1}^{N} \exp\{x_j\}}$$

$$\blacktriangleright \text{ Avoids numerical instability}$$

$$= \frac{\exp\{x_i - MAX_i(x)\}}{\sum_{j=1}^{N} \exp\{x_j - MAX_j(x)\}}$$

Computing the Attention SoftMax

ADPLL and LDO

Source: https://fasoc.engin.umich.edu/ad-pll/

LDO RESPONSE TIME	3.8ns/50mV
LDO PEAK CURRENT EFFICIENCY	99.2% @ I _{load,max}
LDO <i>I</i> _{load,max}	200mA
ADPLL POWER	2.46mW@1GHz

Spice Simulations

With integrated LDO and ADPLL, the transition and settling time are optimized to be within 100ns

Spice Simulations

Outline

- Motivation
- EdgeBERT Optimizations
- Synergistic Evaluation
- Hardware Architecture
- Hardware Evaluation
- Conclusion

Impact of Adaptive Attention Span (AAS) and Sparse Execution

Impact of Adaptive Attention Span (AAS) and Sparse Execution

- Latency decreases by ~3.5X as vector size doubles
- Sparse execution reduces energy by 1.4X
- MAC vector size of 16 is the most energy-efficient

DVFS-based Latency-Aware Inference

DVFS-based Latency-Aware Inference

- 7X and 2.5X energy savings compared to the non-optimized and conventional EE inference approaches, respectively
- For stricter latency targets (e.g. < 20ms), proposed scheme can be used with a larger MAC vector size (i.e. n ≥ 32)

Latency and Energy Breakdown within EdgeBERT HW Units

	PU Datapaths			SFU Datapaths				
	MACs	Bitmask Encoding	Bitmask Decoding	Softmax & Attn. Masking	Normalization	Element-Wise Addition	Early Exit Assessment	
Latency	90.7%	3.2%	3.2%	1.1%	1.2%	0.13%	0.40%	
Energy	98.8%	0.42%	0.33%	0.22%	0.14%	0.003%	0.04%	

Most computations are spent in the PU datapath which also accounts for the majority of the energy consumption

Accelerator GF12nm Summary

The 12nm EdgeBERT accelerator consumes 86mW of power and occupies 1.4mm² of area

Conclusion

EdgeBERT is a <u>cross-stack</u> (algorithm, architecture, solid-state) set of optimizations for <u>minimizing</u> the energy consumption of <u>multi-task NLP</u> inference at a <u>sentence granularity</u> under the <u>constraint</u> of an application <u>end-to-end latency target</u>.

Thank You

<u>Contact</u>: Thierry Tambe (ttambe@g.harvard.edu)

EdgeBERT HW/SW infrastructure has been opened sourced at:

- <u>https://github.com/harvard-acc/EdgeBERT</u>
- https://zenodo.org/record/5138730