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Deep learning based NLP is applied widely

Image references
https://sitechecker.pro/search-engines/
https://towardsdatascience.com/automatic-question-answering-ac7593432842
https://usersnap.com/blog/design-language-switch/

Search EnginesChat BotsLanguage Modeling & 
Understanding
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Deep learning based NLP is applied widely

Image references
https://sitechecker.pro/search-engines/
https://towardsdatascience.com/automatic-question-answering-ac7593432842
https://usersnap.com/blog/design-language-switch/

Search EnginesChat BotsLanguage Modeling & 
Understanding

https://azure.microsoft.com/en-us/blog/bing-delivers-its-largest-improvement-in-search-experience-using-azure-gpus/

https://blog.google/products/search/search-language-understanding-bert/
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Transformers are behind NLP success 

Image references
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-gpt2/
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Newer AI models are increasingly
Transformer-based

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 Year

DNNs

AlexNet ZFNet

RNN-T

Inception

DeepSpeech

ResNet

VGG-16
Inception-v2

Inception-v3

DeepSpeech2

DenseNet

FractalNet

SqueeNet

WaveNet

GNMT Attention-RNN-T

Transformer

CNN-bLSTM CAPIO

BERT

GPT-1 DistilBERT

GPT-2

ALBERT
XLNet

SpecAugment

MobileNet

ShuffleNet
EfficientNet

GPT-3
MobileBERT

SqueezeBERT
Switch-

Transformers

ContextNet

Conformer

Predominantly 
CNN-based

Predominantly 
RNN-based

Predominantly 
Transformer-Based

Hybrids

WaveRNN
Tacotron2

Tacotron Flowtron

Visual Transformers



NLP growing overhead 
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NLP growing overhead 
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NLP growing overhead 
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Ø Need for a 2-dimensional compression along the memory and 
computations axes for energy-efficient inference

Ø End of Moore’s law requires software-hardware specialization



What is EdgeBERT?
EdgeBERT is a cross-stack (algorithm, architecture,
solid-state) set of optimizations for minimizing the
energy consumption of multi-task NLP inference at a
sentence granularity under the constraint of an
application end-to-end latency target.
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Abstracting Energy Consumption

§ 𝛼 − switching activity factor
§ 𝐶 − wire and device capacitance
§ 𝑉!!" − supply voltage
§ 𝑁#$#%&' − # of inference clock cycles

𝐸𝑛𝑒𝑟𝑔𝑦 ∝ 𝛼 𝐶 𝑉!!" 𝑁#$#%&'
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All-Encompassing Energy Reduction
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Latency-Aware
DVFS

Ø Latency-aware dynamic voltage frequency scaling enforces a 
quadratic reduction in the accelerator energy consumption

𝐸𝑛𝑒𝑟𝑔𝑦 ∝ 𝛼 𝐶 𝑉!!" 𝑁#$#%&'



All-Encompassing Energy Reduction
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Latency-Aware
DVFS

Ø Entropy-based early exit and adaptive attention span reduce the 
required number of FLOPs

Entropy-based 
Early-Exit

Adaptive 
Attention Span

𝐸𝑛𝑒𝑟𝑔𝑦 ∝ 𝛼 𝐶 𝑉!!" 𝑁#$#%&'



All-Encompassing Energy Reduction
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Latency-Aware
DVFS

Ø eNVMs for NLP word embedding storage ultimately reduce on-
chip capacitance and memory read cycles

Entropy-based 
Early-Exit

Adaptive 
Attention Span

𝐸𝑛𝑒𝑟𝑔𝑦 ∝ 𝛼 𝐶 𝑉!!" 𝑁#$#%&'
Embedded 

Non-Volatile
Memories



All-Encompassing Energy Reduction
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Latency-Aware
DVFS

Ø Sparse computations in the EdgeBERT HW accelerator considerably 
lowers energy consumption via MAC gating and logic skipping 

Entropy-based 
Early-Exit

Adaptive 
Attention Span

𝐸𝑛𝑒𝑟𝑔𝑦 ∝ 𝛼 𝐶 𝑉!!" 𝑁#$#%&'
Embedded 

Non-Volatile
Memories

Sparse 
Computations
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Latency-Aware
DVFS

Entropy-based 
Early-Exit

Adaptive 
Attention Span

!"#$%& ∝ (	*	+!!" 	,#$#%&'	
Embedded 

Non-Volatile
Memories

Sparse 
Computations

Energy Savings Contributions 
in 12nm Accelerator Adaptation 
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Latency-Aware
DVFS

Entropy-based 
Early-Exit

Adaptive 
Attention Span

!"#$%& ∝ (	*	+!!" 	,#$#%&'	
Embedded 

Non-Volatile
Memories

Sparse 
Computations

12nm 
EdgeBERT 
accelerator
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in 12nm Accelerator Adaptation 
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Latency-Aware
DVFS

Entropy-based 
Early-Exit

Adaptive 
Attention Span

!"#$%& ∝ (	*	+!!" 	,#$#%&'	
Embedded 

Non-Volatile
Memories

Sparse 
Computations

12nm 
EdgeBERT 
accelerator

Energy Savings Contributions 
in 12nm Accelerator Adaptation 

eNVMs
4%

Early Exit
22%

Adaptive 
Attention Span

12%
Latency-Aware 

DVFS
23%

Sparse 
Execution

39%

CHART TITLE
eNVMs Early Exit Adaptive Attention Span Latency-Aware DVFS Sparse Execution



Outline

18

• Motivation
• EdgeBERT Optimizations
• Synergistic Evaluation
• Hardware Architecture
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Conventional BERT inference

ØComputation goes through all 12 Transformer layers

20

“Smart, provocative 
and blistering funny” 1 (Positive Sentiment)Word 

Embeddings
Transformer

Layer 1
Transformer

Layer 2
Transformer

Layer 12



BERT inference with early exit

Ø Inference exits early if the entropy is smaller than a user-given threshold

21

YesNo

“Smart, provocative 
and blistering funny”

Exit? 1 (Positive Sentiment)

Word 
Embeddings

Transformer
Layer 1

Transformer
Layer 2

Transformer
Layer 12

Exit?



Early exit achieves significant 
latency savings

ØOn the SST-2 task, close to 
80% of BERT computations 
can be saved while 
maintaining 95% of the 
original accuracy.

22

MNLI QQP STT-2 QNLIMNLI QQP STT-2 QNLISST-2



Proposed latency-aware inference

Ø DVFS uses the predicted early exit layer to lower the energy 
consumption during a sentence inference

23

(c) EdgeBERT Latency-Aware Inference (HW/SW Co-Design)

DVFSEarly Exit
Predictor

Target Latency
(e.g. 50ms)

Exit after Layer 5

Exit? No

1 (Positive Sentiment)

“Smart, provocative 
and blistering funny”

Transformer
Layer 1

Exit?

Transformer
Layer 2

Transformer
Layer 5

NoReading from 
on-chip eNVMs

Word 
Embeddings



Proposed latency-aware inference

Ø Early exit predictor is a 5-layer neural network perceptron
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(c) EdgeBERT Latency-Aware Inference (HW/SW Co-Design)

DVFSEarly Exit
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Proposed latency-aware inference

25

Ø Accounts for up to 45% of the total accelerator energy reduction

(c) EdgeBERT Latency-Aware Inference (HW/SW Co-Design)

DVFSEarly Exit
Predictor
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Does BERT really need 12 
attention heads?

ØPrior work have shown that there 
is a large amount of redundancy 
in attention heads in BERT and 
other Transformer-based models

27

12× ?



EdgeBERT optimizes the attention 
span of each head during finetuning

Input Sentence

Transformer Encoder
Layer 1

Transformer Encoder
Layer 2

Transformer Encoder
Layer 12

Final Classifier

Embedding Layer

Transformer Encoder
Layer 3

Normalization

Normalization

Feed Forward 
Network

Attention Head
12x

Concat + Linear Layer

Residual 
Connection

Residual 
Connection

Q K

MatMul

Scale

SoftMax

Adaptive
Mask

V

MatMul

Pre-Mask

Post-Mask

Adaptive Attention Span

1

0
!

"!(!)

%
Learnable Attention 

Span Parameter

Pre-Attention
Linear Layer

12x
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Many attention heads can be turned off 
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Many attention heads can be turned off 

Ø Finetuning results show that up to half of ALBERT attention heads 
can be completed turned off prior to inference!
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HW Implications

All the computations inside 
an attention head can be 
effectively skipped in case 
its associated attention 
span mask is null!
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Many attention heads can be turned off 
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Ø Adaptive attention span accounts for up to 12% of the total 
accelerator energy reduction
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BERT word embeddings are appealing for 
storage in non-volatile memories

“Smart, 
provocative 

and blistering 
funny”

1 (Positive Sentiment)

Task-specific: new weights learned 
for each task during finetuning!

Shared: weights frozen 
during finetuning!

34
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BERT word embeddings are appealing for 
storage in non-volatile memories

“Smart, 
provocative 

and blistering 
funny”

1 (Positive Sentiment)

Task-specific: new weights learned 
for each task during finetuning!

Shared: weights frozen 
during finetuning!

Ø BERT word embeddings become read-only, therefore are a 
good match for NVM storage

35
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BERT word embeddings are appealing for 
storage in non-volatile memories

“Smart, 
provocative 

and blistering 
funny”

1 (Positive Sentiment)

Task-specific: new weights learned 
for each task during finetuning!

Shared: weights frozen 
during finetuning!

Ø NVM provides benefit during intermittent operation
Ø Obviates need to reload word embeddings from off-chip DRAM

36

Word 
Embeddings

Transformer
Layer 1

Transformer
Layer 2

Transformer
Layer 12



Viability of Multi-Level Cell ReRAM
for Word Embedding Storage 

37

Single-Level Cell 3-bits Per Cell ReRAM2-bits Per Cell ReRAM



Ø3-bits per Cell ReRAM shows vulnerability 

38

Single-Level Cell 3-bits Per Cell ReRAM2-bits Per Cell ReRAM

Viability of Multi-Level Cell ReRAM
for Word Embedding Storage 



ØThe EdgeBERT accelerator system leverages MLC2 ReRAMs for 
word embedding storage

39

Single-Level Cell 3-bits Per Cell ReRAM2-bits Per Cell ReRAM

Viability of Multi-Level Cell ReRAM
for Word Embedding Storage 
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Summary of Optimizations

Cross-stack (algorithm, architecture, solid-state) 
optimizations for multi-task NLP inference
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Training and Evaluation Procedure
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Training and Evaluation Procedure
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Training and Evaluation Procedure
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Performance and Accuracy Implications

EdgeBERT latency-aware 
inference provides slightly 
higher or comparable average 
EE layer for the same 
accuracy threshold as the 
conventional EE approach
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Reasonably Compact NVM Capacity

Ø 40% density in the embedding layer across all tasks, i.e. ~2MB 
can be provisioned for on-chip ReRAM storage
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Ultra Low Attention Span

Ø An average attention span less than 22
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EdgeBERT Processing Unit (PU)

Ø Bit-mask decoder for decompressing non-zero matrices
§ 16 KB scratchpad containing binary masks for activations and weights
§ 128 KB scratchpad containing non-zero activations and weights

49
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Ø Datapath takes two n*n matrices and computes n*n*n MAC operations in n 
clock cycles
§ 8-bit floating-point MAC
§ skips MAC computations on zero operands

EdgeBERT Processing Unit (PU)



ØBit-mask encoder for compressing back sparse matrices

51

EdgeBERT Processing Unit (PU)



EdgeBERT Special Function Unit (SFU) 

ØThe special function unit (SFU) contains specialized datapaths for:
§ Early exit assessment, Layer Normalization, Element-wise Addition, DVFS control
§ SoftMax and attention masking -- only activated if attention span is not null

Ø 32KB auxiliary buffer stores metadata
52
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ØDVFS controller writes to LDO and ADPLL registers to generate 
energy-optimal VDD and CLK

Integrated LDO and ADPLL for DVFS
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Ø 2MB of on-chip MLC2 ReRAM to store the shared multi-task word 
embeddings

On-Chip 2MB ReRAM Buffer 



Computing the Attention SoftMax

= !"#{%!&'()!(%)}
∑"#$
% !"#{%"&'()"(%)}

𝑠𝑜𝑓𝑚𝑎𝑥 𝑥! =
exp{𝑥!}

∑"#$% exp{𝑥"}

ØAvoids numerical instability
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Computing the Attention SoftMax

ØEliminates computational 
cost of division

= !"#{%!&'()!(%)}
∑"#$
% !"#{%"&'()"(%)}

𝑠𝑜𝑓𝑚𝑎𝑥 𝑥! =
exp{𝑥!}

∑"#$% exp{𝑥"}

= exp{𝑥! −𝑀𝐴𝑋! 𝑥 − ln(∑!#$% exp(𝑥! −𝑀𝐴𝑋!(𝑥)))}

ØSuppress numerical instability
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ADPLL and LDO

Source: https://fasoc.engin.umich.edu/ad-pll/
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Spice Simulations

With integrated LDO and ADPLL, the transition and settling time are 
optimized to be within 100ns 58



Spice Simulations
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Impact of Adaptive Attention Span (AAS) 
and Sparse Execution

61



Impact of Adaptive Attention Span (AAS) 
and Sparse Execution

Ø Latency decreases by ~3.5X as 
vector size doubles

Ø Sparse execution reduces 
energy by 1.4X

Ø MAC vector size of 16 is the 
most energy-efficient
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DVFS-based Latency-Aware Inference
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DVFS-based Latency-Aware Inference

Ø 7X and 2.5X energy savings 
compared to the non-optimized and 
conventional EE inference 
approaches, respectively

Ø For stricter latency targets (e.g. < 
20ms), proposed scheme can be 
used with a larger MAC vector size 
(i.e. n ≥ 32)
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Latency and Energy Breakdown
within EdgeBERT HW Units

Ø Most computations are spent in the PU datapath which also 
accounts for the majority of the energy consumption

65



Accelerator GF12nm Summary

Ø The 12nm EdgeBERT accelerator consumes 86mW of power 
and occupies 1.4mm2 of area

66



Conclusion

67

EdgeBERT is a cross-stack (algorithm, architecture, solid-state) set of
optimizations for minimizing the energy consumption of multi-task NLP
inference at a sentence granularity under the constraint of an application
end-to-end latency target.



Thank You
Contact: Thierry Tambe (ttambe@g.harvard.edu)

EdgeBERT HW/SW infrastructure has been opened sourced at:
§ https://github.com/harvard-acc/EdgeBERT
§ https://zenodo.org/record/5138730

This presentation and recording belong to the authors. No distribution is allowed without the authors' permission 68

https://github.com/harvard-acc/EdgeBERT
https://zenodo.org/record/5138730

