A 12nm 18.1TFLOPs/W Sparse Transformer Processor with Entropy-Based Early Exit, Mixed-Precision Predication, and Fine-Grained Power Management

<u>Thierry Tambe</u>¹, Jeff Zhang¹, Coleman Hooper¹, Tianyu Jia², Paul N. Whatmough^{1,3}, Joseph Zuckerman⁴, Maico Cassel⁴, Erik Loscalzo⁴, Davide Giri⁴, Kenneth Shepard⁴, Luca Carloni⁴, Alexander M. Rush⁵, David Brooks¹, Gu-Yeon Wei¹

¹Harvard University, Cambridge, MA, ²Peking University, Beijing, China,

³ARM, Boston, MA, ⁴Columbia University, New York, NY,

⁵Cornell University, New York, NY

Harvard John A. Paulson

School of Engineering

and Applied Sciences

ML-based NLP is applied widely

Language Modeling & Understanding

Search Engines

Understanding searches better than ever before

Oct 25, 2019 · 5 min read https://blog.google/products/search/search-language-understanding-bert/

Bing delivers its largest improvement in search experience using Azure GPUs

Posted on November 18, 2019

https://azure.microsoft.com/en-us/blog/bing-delivers-its-largest-improvement-in-search-experience-using-azure-gpus/

NLP Growing Overhead

Source: https://amatriain.net/blog/transformer-models-anintroduction-and-catalog-2d1e9039f376/

Opportunities to achieve higher energy efficiency on edge devices via careful algorithm-hardware co-design

© 2023 IEEE International Solid-State Circuits Conference

Processor for Efficient Transformer Computation

Abstracting Energy Consumption

Energy $\propto \alpha \ C \ V_{DD}^2 \ N_{cycles}$

- α switching activity factor
- *C* wire and device capacitance
- V_{DD}^2 supply voltage
- *N_{cycles}* # of inference clock cycles

Proposed Optimization Schemes

Proposed Optimization Schemes

Outline

Motivation

Entropy-Driven Optimizations

- Early Exit
- Latency-Aware Voltage-Frequency Scaling

12nm Transformer Accelerator Architecture

- Mixed-Precision FP4/FP8 Datapath
- Chip Measurement Results

Summary

Outline

Motivation

Entropy-Driven Optimizations

- Early Exit
- Latency-Aware Voltage-Frequency Scaling
- 12nm Transformer Accelerator Architecture
 - Mixed-Precision FP4/FP8 Datapath
- Chip Measurement Results

Summary

Conventional BERT Inference

<u>Source</u>: Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." *arXiv preprint arXiv:1810.04805* (2018)

BERT Inference with Entropy-based Early Exit

Inference exits early if the entropy is smaller than a usergiven threshold

<u>Source</u>: Xin, Ji, et al. "DeeBERT: Dynamic early exiting for accelerating BERT inference." *arXiv preprint arXiv:2004.12993* (2020).

Significant Latency Savings

Two Optimization Directions

Latency minimization Energy minimization

Latency Minimization

- Accelerator operates at max frequency with early exit
- Attention head pruning and mixed-precision FP4/FP8 datapath further cut inference latency

Energy Minimization

Accelerator uses entropy statistics to derate its voltage and frequency while adhering to a prescribed latency target.

Outline

Motivation

- Entropy-Driven Optimizations
 - Early Exit
 - Latency-Aware Voltage-Frequency Scaling
- 12nm Transformer Accelerator Architecture
 - Mixed-Precision FP4/FP8 Datapath
- Chip Measurement Results

Summary

Proposed Sparse Transformer Processor

Compressed Sparse Mixed-Precision Execution

Bit-Mask Sparse Decoder Mixed-Precision FP4/FP8 Datapath Sparse Encoder

Entropy-Controlled Voltage-Frequency Scaling

Entropy-Controlled Voltage-Frequency Scaling using:

- Open-loop free running LDO
- Cell-based PMOS power headers
- 16 pre-characterized LUT entropy values control the LDO drive strength
- DCO powered from LDO output

Proposed Sparse Transformer Processor

Outline

Motivation

Entropy-Driven Optimizations

- Early Exit
- Latency-Aware Voltage-Frequency Scaling
- 12nm Transformer Accelerator Architecture

Mixed-Precision FP4/FP8 Datapath

Chip Measurement Results

Summary

Efficient Number Systems

 $\gamma \propto$ distance between values

<u>Source</u>: Zhao, Jiawei, et al. "LNS-Madam: Low-Precision Training in Logarithmic Number System Using Multiplicative Weight Update." *IEEE Transactions on Computers*, 2022.

Tensor Multiplication in Logarithmic Number System (LNS) $a = sign_a \times 2^{\tilde{a}/\gamma}$ $b = sign_b \times 2^{\tilde{b}/\gamma}$

$$a^{T}b = \sum XOR(sign_{a}, sign_{b}) \times 2^{(\tilde{a}+\tilde{b})/\gamma}$$

No Need for Multipliers! (Only Adders + Shifters)

<u>Source</u>: Zhao, Jiawei, et al. "LNS-Madam: Low-Precision Training in Logarithmic Number System Using Multiplicative Weight Update." *IEEE Transactions on Computers*, 2022.

Tensor Scaling

© 2023 IEEE International Solid-State Circuits Conference

Mixed-Precision MAC Datapath

FP8 (E4M3) MAC

FP4/LOG4 (E3M0) MAC

Tensor Scaling Unit

Steep Accuracy Loss w/ Per-Tensor Bias in FP4

Baseline SST-2 Acc.	92.2	
w/ FP8 per-tensor exponent bias	92.2	 23 ·
w/ FP4 per-tensor exponent bias	69.0	

Per-Vector Exponent Scaling when using FP4

To avoid steep accuracy loss, we adopt per-vector exponent bias scaling in the FP4 regime

Per-Vector Scaling in FP4 Averts Steep Accuracy Loss

Baseline SST-2 Acc.	92.2	
w/ FP8 per-tensor scaling	92.2	
w/ FP4 per-tensor scaling	69.0	
w/ FP4 per-vector scaling	88.3	-3.

Entropy-Controlled Precision Selection

Pre-calibrated entropy predication selects between FP4 and FP8 MAC during mixed-precision operation

Outline

Motivation

Entropy-Driven Optimizations

- Early Exit
- Latency-Aware Voltage-Frequency Scaling
- 12nm Transformer Accelerator Architecture
 - Mixed-Precision FP4/FP8 Datapath

Chip Measurement Results

Summary

12nm Chip Tapeout

© 2023 IEEE International Solid-State Circuits Conference 22.9: A 12nm 18.1TFLOPs/W Sparse Transformer Processor with Entropy-Based Early Exit, Mixed-Precision Predication and Fine-Grained Power Management

0.62 - 1.0

77 – 717

647

Accelerator Efficiency

Entropy Hardware Unit

22.9: A 12nm 18.1TFLOPs/W Sparse Transformer Processor with Entropy-Based Early Exit, Mixed-Precision Predication and Fine-Grained Power Management

37 of 43

Measured Latency Results

Measured Energy Results

Summary

- Large language models levy a hefty cost on low capacity edge devices
- This work enables fine-grained sentence-level latency and energy optimizations for BERT inference aided by:
 - Entropy-based early exit
 - Entropy-based voltage/frequency scaling
 - FP4/FP8 mixed-precision MAC

Measurements on test chip show:

- Up to 6x latency reduction and 7x energy reduction over conventional inference
- Peak throughput of 18.1TFLOPs/W

This Work is Dedicated to our Friend and Collaborator: Davide Giri

1990 - 2021

© 2023 IEEE International Solid-State Circuits Conference

Thank You!

Acknowledgements

- This work is supported in part by DARPA, JUMP ADA, NSF Awards 1704834 and 1718160, Intel Corp., and Arm Inc.
- We thank our DARPA collaborators from IBM, Pradip Bose, Martin Cochet, and Karthik Swaminathan for helping support this work.