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A Startling Observation

There is a plethora of DNN quantization techniques out there
* Most are fixed-point based
e Evaluated solely on CNNs such as ResNet
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* Perform poorly on models with wide weight distribution such as in NLP
e Due to an inherent lack of dynamic range ]




This work

A generalized DNN numerical encoding blueprint, AdaptivFloat, that is:

& Adaptive to the statistical distribution of the DNN parameters

i.:'ﬁ Resilient to aggressive bit width compression

ﬁ% Hardware-friendly with low energy overheads (
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The AdaptivFloat Algorithm

Wi, : full precision weight matrix

* Floating-point based
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 Performed at a per-layer granularity
* Maximizes dynamic range by formulating an exponent bias, exp,,., from

maximum absolute tensor value
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Then uses exp,,,. to shift the exponent range of datapoints
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Handling Denormals

Floating points w/o denormals,

Floating points w/o denormals e )
&P / but sacrifice £min for 0
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* AdaptivFloat break from IEEE754 standard compliance by not encoding floating-
point denormals = leaner hardware design
* We sacrifice the positive and negative minimum representable datapoints

to allocate for the “zero” slot (.
* AdaptivFloat clamps unrepresentable small and large values N



AdaptivFloat is Lightweight and Self-Supervised

Algorithm 1: AdaptivFloat Quantization

Input: Matrix Wy, bitwidth n and number of exponent bits e
// Get Mantissa bits

e * Relies only on the unlabeled data distributions
Wsign = sign(Wyp); Waps = abs(Wrp) 1

/( Determ:i\e exfpb,-as and range ! In the network

R NVC e Can be easily plugged into any ML framework at

exXPpias = €XPmax — (26— 1)

walte = 2P + (1427) learning or inference time

valuemay = 29¥Pmax 4 (2 — 27™)

R e R * User just needs to provide the input tensor, and

Clamp value > valuemax in Wyps to valuemax . . N .
/1 Quantize Wy, the required word size and exponent bit width
Find normalized Wex, and Wi,y such that
Waps = ZWeXP * Winant» and 1 < Winane < 2
Wy = quantize and round Wyan: by scale = 27

// Reconstruct output matrix
Wudptiv = Wsign x 2Wexp Wy

return Wgp i, (
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Experimental Setup

Application Dataset # of Range of Params | FP32
Params Performance

Transformer Machine Translation WMT’17 EN-to-DE  93M [-12.46, 20.41] BLEU: 27.40
Seq2Seq Speech-to-Text LibriSpeech 960H  20M [-2.21, 2.39] WER: 13.34
ResNet-50 Image Classification ImageNet 25M [-0.78, 1.32] Top-1 Acc: 76.2

Selected models have narrow to wide weight distribution

Data types being Adaptive Dynamic
evaluated Range?

AdaptivFloat Yes
Uniform/Integer Yes
Posit No

Block Floating-Point Yes
IEEE-like Floating-Point No

Evaluating against prominent datatypes commonly used in deep learning



Root Mean Square Error
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AdaptivFloat produces lowest average quantization error
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(c) Transformer 8-bit weights
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AdaptivFloat produces lowest average quantization error across
models, data types, and bit precisions




Post-Training Quantization
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AdaptivFloat demonstrates much greater resiliency towards low word sizes




Transformer BLEU Score

Quantization-Aware Retraining
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AdaptivFloat maintains much greater resiliency towards low word sizes




Compressing both Weights and Activations
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AdaptivFloat maintains greater resiliency when both weights and activations are quantized
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NVDLA-like n-bit Integer-based PE (INT PE)

Weight Buffer Input Buffer
w.tn nAg A

4__, * Weights and input activations are

%‘ %5 ______________ “2@ stored in integer format in their

A e respective buffers

éb * Fixed-point vector MACs

T * High precision scaling factor required

SESEig Fasr—sl to scale post-MAC results

2'n + logy(H) + § * Scaling factor and fractional width stored

in a PE register

Fraotlo_naIW|dth NS
of Scaling Factor

2*n +log,(H) + S

A 4
Truncation

n r
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Activation Unit J_O ‘
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Storage




Proposed n-bit Hybrid Float-Integer PE (HFINT PE)

Weight Bufier | | nput Buffe * Weights and input activations are
w"" A stored in AdaptivFloat format in
their respective buffers

Floating-Point ﬁ . F!oatmg--pomt vector MACS
* Fixed-point post-processing

Vector MAC @:‘
AdaptivFloat 2%(2n-e%-1) + 2*n_mant + log,(H)
Weight exp,;,s A4
+ ¥ >>
i i AdaptivFioat 2*(2e0 1) + 2*n_mant + log,(H)
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Proposed n-bit Hybrid Float-Integer PE (HFINT PE)

Weight Buffer | | Input Buffer * Weights and input activations are
. W,,” A stored in AdaptivFloat format in
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Proposed n-bit Hybrid Float-Integer PE (HFINT PE)

Weight Buffer | | Input Buffer * Weights and input activations are
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INTx/y/z = Integer datapath with x-bit operands, accumulated into y-bit and scaled to z-bit
HFINTx/y = Hybrid Float-Integer datapath with x-bit operands, accumulated into y-bit
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Deep learning quantization
algorithms need to provide
adequate dynamic range to
faithfully encode DNNs of various
parameter statistics
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The AdaptivFloat AdaptivFloat is found to AdaptivFloat yields
algorithm adapts to DNN be resilient to aggressive higher energy efficiencies
parameters by shifting its bit compression and wide  in HW compared to fixed-
exponent range based on data distribution point solutions

the max absolute value in
the layer matrix




Thank you
Any Question?



