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• Perform poorly on models with wide weight distribution such as in NLP
• Due to an inherent lack of dynamic range
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The AdaptivFloat Algorithm
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Wfp : full precision weight matrix Get quantized Wadaptiv  by 
rounding to nearest datapoints

Find expbias  to fit max absolute value of 
Wfp  and get representable datapoints

• Floating-point based
• Performed at a per-layer granularity
• Maximizes dynamic range by formulating an exponent bias, expbias, from 

maximum absolute tensor value
• Then uses expbias to shift the exponent range of datapoints



Handling Denormals

• AdaptivFloat break from IEEE754 standard compliance by not encoding floating-
point denormals à leaner hardware design
• We sacrifice the positive and negative minimum representable datapoints 

to allocate for the “zero” slot
• AdaptivFloat clamps unrepresentable small and large values



AdaptivFloat is Lightweight and Self-Supervised

• Relies only on the unlabeled data distributions 
in the network

• Can be easily plugged into any ML framework at 
learning or inference time

• User just needs to provide the input tensor, and 
the required word size and exponent bit width 
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Experimental Setup
Model Application Dataset # of 

Params
Range of Params FP32 

Performance

Transformer Machine Translation WMT’17 EN-to-DE 93M [-12.46, 20.41] BLEU: 27.40

Seq2Seq Speech-to-Text LibriSpeech 960H 20M [-2.21, 2.39] WER: 13.34

ResNet-50 Image Classification ImageNet 25M [-0.78, 1.32] Top-1 Acc: 76.2

Data types being 
evaluated

Adaptive Dynamic 
Range?

AdaptivFloat Yes

Uniform/Integer Yes

Posit No

Block Floating-Point Yes

IEEE-like Floating-Point No

Selected models have narrow to wide weight distribution

Evaluating against prominent datatypes commonly used in deep learning



Root Mean Square Error
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Root Mean Square Error

AdaptivFloat produces lowest average quantization error across 
models, data types, and bit precisions



Post-Training Quantization

AdaptivFloat demonstrates much greater resiliency towards low word sizes

Higher is better Higher is better

Lower is better



Quantization-Aware Retraining

AdaptivFloat maintains much greater resiliency towards low word sizes  

Higher is better
Higher is better

Lower is better



Compressing both Weights and Activations 

AdaptivFloat maintains greater resiliency when both weights and activations are quantized 

Lower is better

Higher is better

Higher is better



This work

A generalized numerical DNN encoding blueprint, AdaptivFloat, that is:

Adaptive to the statistical distribution of the DNN parameters

Hardware-friendly with low energy overheads

Resilient to aggressive bit width compression



NVDLA-like n-bit Integer-based PE (INT PE)

• Weights and input activations are 
stored in integer format in their 
respective buffers

• Fixed-point vector MACs
• High precision scaling factor required 

to scale post-MAC results
• Scaling factor and fractional width stored 

in a PE register



Proposed n-bit Hybrid Float-Integer PE (HFINT PE)
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Proposed n-bit Hybrid Float-Integer PE (HFINT PE)

• Weights and input activations are 
stored in AdaptivFloat format in 
their respective buffers
• Floating-point vector MACs
• Fixed-point post-processing
• expbias values stored in a PE register
• Exponent-shift of partial sums by 
expbias



Hardware Performance

+ HFINT produces lower per-operation energy 
compared to an integer-based PE

- HFINT generates higher area compared to 
an integer-based PE

INTx/y/z = Integer datapath with x-bit operands, accumulated into y-bit and scaled to z-bit
HFINTx/y = Hybrid Float-Integer datapath with x-bit operands, accumulated into y-bit
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Deep learning quantization 
algorithms need to provide 
adequate dynamic range to 

faithfully encode DNNs of various 
parameter statistics 

The AdaptivFloat 
algorithm adapts to DNN 
parameters by shifting its 
exponent range based on 
the max absolute value in 

the layer matrix

AdaptivFloat is found to 
be resilient to aggressive 
bit compression and wide 

data distribution

AdaptivFloat yields 
higher energy efficiencies 
in HW compared to fixed-

point solutions



Thank you
Any Question?


